IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v57y2013icp181-189.html
   My bibliography  Save this article

Transient overvoltage phenomena on the control system of wind turbines due to lightning strike

Author

Listed:
  • Jiang, Jheng-Lun
  • Chang, Hong-Chan
  • Kuo, Cheng-Chien
  • Huang, Cheng-Kai

Abstract

This study proposes a simulation process for lightning protection. In addition, it analyzes and proposes lightning protection methods by simulating the effects of transient over-voltage on the control system that occur when lightning directly strikes a wind turbine. This study used Electro Magnetic Transient Program/Alternative Transient Program (EMTP/ATP) to build a lightning model and a tower-control line model according to actual wind turbine structures and local lightning characteristics in Taoyuan, Taiwan. Various lightning strikes and ground resistances were simulated with consideration to whether the tower and the control system were individual or interconnected ground systems to observe transient phenomena in the control line. The transient over-voltage of the insulating layer and conductor of the control line, and the coupling voltage between the control line and the tower were analyzed based on three simulation cases to propose lightning protection methods that are applicable to Taoyuan. Consequently, an applicable lightning protection method for wind turbines was developed according to requirements of the different installation sites, and the lightning information and a decision maker were used to estimate the degree of protection. Specific proposals can be made using the method proposed in this study, avoiding waste in lightning protection.

Suggested Citation

  • Jiang, Jheng-Lun & Chang, Hong-Chan & Kuo, Cheng-Chien & Huang, Cheng-Kai, 2013. "Transient overvoltage phenomena on the control system of wind turbines due to lightning strike," Renewable Energy, Elsevier, vol. 57(C), pages 181-189.
  • Handle: RePEc:eee:renene:v:57:y:2013:i:c:p:181-189
    DOI: 10.1016/j.renene.2013.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2012. "Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study," Renewable Energy, Elsevier, vol. 46(C), pages 232-240.
    2. Lin, Chyou-Jong & Yu, Oliver S. & Chang, Chung-Liang & Liu, Yuin-Hong & Chuang, Yuh-Fa & Lin, Yu-Liang, 2009. "Challenges of wind farms connection to future power systems in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1926-1930.
    3. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    4. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Protection of wind energy systems against the indirect effects of lightning," Renewable Energy, Elsevier, vol. 36(11), pages 2888-2896.
    5. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    6. Radičević, Branko M. & Savić, Milan S. & Madsen, Søren Find & Badea, Ion, 2012. "Impact of wind turbine blade rotation on the lightning strike incidence – A theoretical and experimental study using a reduced-size model," Energy, Elsevier, vol. 45(1), pages 644-654.
    7. Cavka, Damir & Poljak, Dragan & Doric, Vicko & Goic, Ranko, 2012. "Transient analysis of grounding systems for wind turbines," Renewable Energy, Elsevier, vol. 43(C), pages 284-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shariatinasab, Reza & Kermani, Behzad & Gholinezhad, Javad, 2019. "Transient modeling of the wind farms in order to analysis the lightning related overvoltages," Renewable Energy, Elsevier, vol. 132(C), pages 1151-1166.
    2. Hosseini, S.M Amin & Mohammadirad, Amir & Shayegani Akmal, Amir Abbas, 2022. "Surge analysis on wind farm considering lightning strike to multi-blade," Renewable Energy, Elsevier, vol. 186(C), pages 312-326.
    3. Hetita, Ibrahim & Zalhaf, Amr S. & Mansour, Diaa-Eldin A. & Han, Yang & Yang, Ping & Wang, Congling, 2022. "Modeling and protection of photovoltaic systems during lightning strikes: A review," Renewable Energy, Elsevier, vol. 184(C), pages 134-148.
    4. Petar Sarajcev & Antun Meglic & Ranko Goic, 2021. "Lightning Overvoltage Protection of Step-Up Transformer Inside a Nacelle of Onshore New-Generation Wind Turbines," Energies, MDPI, vol. 14(2), pages 1-20, January.
    5. Malcolm, Newman & Aggarwal, Raj K., 2015. "The impact of multiple lightning strokes on the energy absorbed by MOV surge arresters in wind farms during direct lightning strikes," Renewable Energy, Elsevier, vol. 83(C), pages 1305-1314.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2012. "Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study," Renewable Energy, Elsevier, vol. 46(C), pages 232-240.
    2. Malcolm, Newman & Aggarwal, Raj K., 2015. "The impact of multiple lightning strokes on the energy absorbed by MOV surge arresters in wind farms during direct lightning strikes," Renewable Energy, Elsevier, vol. 83(C), pages 1305-1314.
    3. Hosseini, S.M Amin & Mohammadirad, Amir & Shayegani Akmal, Amir Abbas, 2022. "Surge analysis on wind farm considering lightning strike to multi-blade," Renewable Energy, Elsevier, vol. 186(C), pages 312-326.
    4. Sarajcev, Petar & Vasilj, Josip & Goic, Ranko, 2013. "Monte Carlo analysis of wind farm surge arresters risk of failure due to lightning surges," Renewable Energy, Elsevier, vol. 57(C), pages 626-634.
    5. Radičević, Branko M. & Savić, Milan S. & Madsen, Søren Find & Badea, Ion, 2012. "Impact of wind turbine blade rotation on the lightning strike incidence – A theoretical and experimental study using a reduced-size model," Energy, Elsevier, vol. 45(1), pages 644-654.
    6. Sarajcev, P. & Vasilj, J. & Jakus, D., 2016. "Monte–Carlo analysis of wind farm lightning-surge transients aided by LINET lightning-detection network data," Renewable Energy, Elsevier, vol. 99(C), pages 501-513.
    7. Valentine, Scott Victor, 2010. "A STEP toward understanding wind power development policy barriers in advanced economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2796-2807, December.
    8. Shariatinasab, Reza & Kermani, Behzad & Gholinezhad, Javad, 2019. "Transient modeling of the wind farms in order to analysis the lightning related overvoltages," Renewable Energy, Elsevier, vol. 132(C), pages 1151-1166.
    9. Ting, Chen-Ching & Lai, Chen-Wei & Huang, Chien-Bang, 2011. "Developing the dual system of wind chiller integrated with wind generator," Applied Energy, Elsevier, vol. 88(3), pages 741-747, March.
    10. Sarajcev, Petar & Vujevic, Slavko & Lovric, Dino, 2014. "Interfacing harmonic electromagnetic models of grounding systems with the EMTP-ATP software package," Renewable Energy, Elsevier, vol. 68(C), pages 163-170.
    11. Jiangyan Yan & Guozheng Wang & Qingmin Li & Li Zhang & Joseph D. Yan & Chun Chen & Zhiyang Fang, 2017. "A Comparative Study on Damage Mechanism of Sandwich Structures with Different Core Materials under Lightning Strikes," Energies, MDPI, vol. 10(10), pages 1-14, October.
    12. He, Hengxin & Chen, Weijiang & Luo, Bin & Bian, Kai & Xiang, Nianwen & Yin, Yu & Zhang, Zhaohua & Dai, Min & He, Tianyu, 2022. "On the electrical breakdown of GFRP wind turbine blades due to direct lightning strokes," Renewable Energy, Elsevier, vol. 186(C), pages 974-985.
    13. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    14. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    15. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    16. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    17. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    18. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    19. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    20. Jaramillo, O.A. & Borja, M.A., 2004. "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case," Renewable Energy, Elsevier, vol. 29(10), pages 1613-1630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:57:y:2013:i:c:p:181-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.