IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2112-d349814.html
   My bibliography  Save this article

Analysis of Metal Oxide Varistor Arresters for Protection of Multiconductor Transmission Lines Using Unconditionally-Stable Crank–Nicolson FDTD

Author

Listed:
  • Erika Stracqualursi

    (Department of Astronautical, Electrical and Energy Engineering, University of Rome “La Sapienza”, via Eudossiana, 18, 00184 Rome, Italy)

  • Rodolfo Araneo

    (Department of Astronautical, Electrical and Energy Engineering, University of Rome “La Sapienza”, via Eudossiana, 18, 00184 Rome, Italy)

  • Giampiero Lovat

    (Department of Astronautical, Electrical and Energy Engineering, University of Rome “La Sapienza”, via Eudossiana, 18, 00184 Rome, Italy)

  • Amedeo Andreotti

    (Electrical Engineering Department, University Federico II of Napoli, 80125 Napoli, Italy)

  • Paolo Burghignoli

    (Department of Information Engineering, Electronics and Telecommunications, University of Rome “Sapienza”, via Eudossiana, 18, 00184 Rome, Italy)

  • Jose Brandão Faria

    (Instituto de Telecomunicações, Instituto Superior Técnico—Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Salvatore Celozzi

    (Department of Astronautical, Electrical and Energy Engineering, University of Rome “La Sapienza”, via Eudossiana, 18, 00184 Rome, Italy)

Abstract

Surge arresters may represent an efficient choice for limiting lightning surge effects, significantly reducing the outage rate of power lines. The present work firstly presents an efficient numerical approach suitable for insulation coordination studies based on an implicit Crank–Nicolson finite difference time domain method; then, the IEEE recommended surge arrester model is reviewed and implemented by means of a local implicit scheme, based on a set of non-linear equations, that are recast in a suitable form for efficient solution. The model is proven to ensure robustness and second-order accuracy. The implementation of the arrester model in the implicit Crank–Nicolson scheme represents the added value brought by the present study. Indeed, its preserved stability for larger time steps allows reducing running time by more than 60 % compared to the well-known finite difference time domain method based on the explicit leap-frog scheme. The reduced computation time allows faster repeated solutions, which need to be looked for on assessing the lightning performance (randomly changing, parameters such as peak current, rise time, tail time, location of the vertical leader channel, phase conductor voltages, footing resistance, insulator strength, etc. would need to be changed thousands of times).

Suggested Citation

  • Erika Stracqualursi & Rodolfo Araneo & Giampiero Lovat & Amedeo Andreotti & Paolo Burghignoli & Jose Brandão Faria & Salvatore Celozzi, 2020. "Analysis of Metal Oxide Varistor Arresters for Protection of Multiconductor Transmission Lines Using Unconditionally-Stable Crank–Nicolson FDTD," Energies, MDPI, vol. 13(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2112-:d:349814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li Zhang & Shengwei Fang & Guozheng Wang & Tong Zhao & Liang Zou, 2017. "Studies on an Electromagnetic Transient Model of Offshore Wind Turbines and Lightning Transient Overvoltage Considering Lightning Channel Wave Impedance," Energies, MDPI, vol. 10(12), pages 1-15, December.
    2. Nurul A. A. Latiff & Hazlee A. Illias & Ab H. A. Bakar & Sameh Z. A. Dabbak, 2018. "Measurement and Modelling of Leakage Current Behaviour in ZnO Surge Arresters under Various Applied Voltage Amplitudes and Pollution Conditions," Energies, MDPI, vol. 11(4), pages 1-16, April.
    3. Christos A. Christodoulou & Vasiliki Vita & Georgios Perantzakis & Lambros Ekonomou & George Milushev, 2017. "Adjusting the Parameters of Metal Oxide Gapless Surge Arresters’ Equivalent Circuits Using the Harmony Search Method," Energies, MDPI, vol. 10(12), pages 1-11, December.
    4. Raphael Pablo de Souza Barradas & Gabriel Vianna Soares Rocha & João Rodrigo Silva Muniz & Ubiratan Holanda Bezerra & Marcus Vinícius Alves Nunes & Jucileno Silva e Silva, 2020. "Methodology for Analysis of Electric Distribution Network Criticality Due to Direct Lightning Discharges," Energies, MDPI, vol. 13(7), pages 1-23, April.
    5. Maurizio Albano & A. Manu Haddad & Huw Griffiths & Paul Coventry, 2018. "Environmentally Friendly Compact Air-Insulated High-Voltage Substations," Energies, MDPI, vol. 11(9), pages 1-14, September.
    6. Chien-Hsun Liu & Yirga Belay Muna & Yu-Tung Chen & Cheng-Chien Kuo & Hung-Yi Chang, 2018. "Risk Analysis of Lightning and Surge Protection Devices for Power Energy Structures," Energies, MDPI, vol. 11(8), pages 1-16, August.
    7. Vegard Steinsland & Lasse Hugo Sivertsen & Emil Cimpan & Shujun Zhang, 2019. "A New Approach to Include Complex Grounding System in Lightning Transient Studies and EMI Evaluations," Energies, MDPI, vol. 12(16), pages 1-14, August.
    8. Petar Sarajčev & Ranko Goić, 2011. "A Review of Current Issues in State-of-Art of Wind Farm Overvoltage Protection," Energies, MDPI, vol. 4(4), pages 1-25, April.
    9. Xiangxin Li & Ming Zhou & Yazhou Luo & Chao Xia & Bin Cao & Xiujuan Chen, 2018. "Insulation Reconstruction for OPGW DC De-Icing and Its Influence on Lightning Protection and Energy Conservation," Energies, MDPI, vol. 11(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadao Ohtani & Yasushi Kanai & Nikolaos V. Kantartzis, 2022. "A Nonstandard Path Integral Model for Curved Surface Analysis," Energies, MDPI, vol. 15(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiazheng Lu & Pengkang Xie & Zhen Fang & Jianping Hu, 2018. "Electro-Thermal Modeling of Metal-Oxide Arrester under Power Frequency Applied Voltages," Energies, MDPI, vol. 11(6), pages 1-13, June.
    2. Nurul A. A. Latiff & Hazlee A. Illias & Ab H. A. Bakar & Sameh Z. A. Dabbak, 2018. "Measurement and Modelling of Leakage Current Behaviour in ZnO Surge Arresters under Various Applied Voltage Amplitudes and Pollution Conditions," Energies, MDPI, vol. 11(4), pages 1-16, April.
    3. Petar Sarajcev & Dino Lovric & Tonko Garma, 2022. "Statistical Safety Factor in Lightning Performance Analysis of Overhead Distribution Lines," Energies, MDPI, vol. 15(21), pages 1-19, November.
    4. Adam Jóśko & Bogdan Dziadak & Jacek Starzyński & Jan Sroka, 2022. "Derivative Probes Signal Integration Techniques for High Energy Pulses Measurements," Energies, MDPI, vol. 15(6), pages 1-18, March.
    5. Ioannis F. Gonos & Issouf Fofana, 2020. "Special Issue “Selected Papers from the 2018 IEEE International Conference on High Voltage Engineering (ICHVE 2018)”," Energies, MDPI, vol. 13(18), pages 1-5, September.
    6. Nur Alia Farina Mohamad Nasir & Mohd Zainal Abidin Ab Kadir & Miszaina Osman & Muhamad Safwan Abd Rahman & Ungku Anisa Ungku Amirulddin & Mohd Solehin Mohd Nasir & Nur Hazirah Zaini & Nik Hakimi Nik A, 2021. "Influence of Lightning Current Parameters and Earthing System Designs on Tower Footing Impedance of 500 kV Lines," Energies, MDPI, vol. 14(16), pages 1-19, August.
    7. Tomasz Kossowski & Paweł Szczupak, 2023. "Laboratory Tests of the Resistance of an Unmanned Aerial Vehicle to the Normalized near Lightning Electrical Component," Energies, MDPI, vol. 16(13), pages 1-18, June.
    8. Hanis Hamizah Hizamul-Din & Normiza Mohamad Nor, 2021. "Analysis of Zinc Oxide (ZnO) Surge Arrester Connected to Various Ground Electrodes," Energies, MDPI, vol. 14(12), pages 1-19, June.
    9. Sarajcev, Petar & Vasilj, Josip & Goic, Ranko, 2013. "Monte Carlo analysis of wind farm surge arresters risk of failure due to lightning surges," Renewable Energy, Elsevier, vol. 57(C), pages 626-634.
    10. Guanchen Liu & Peng Zhao & Yang Qin & Mingmin Zhao & Zhichao Yang & Henglin Chen, 2020. "Electromagnetic Immunity Performance of Intelligent Electronic Equipment in Smart Substation’s Electromagnetic Environment," Energies, MDPI, vol. 13(5), pages 1-19, March.
    11. Bingtuan Gao & Wei Wei & Luoma Zhang & Ning Chen & Yingjun Wu & Yi Tang, 2014. "Differential Protection for an Outgoing Transformer of Large-Scale Doubly Fed Induction Generator-Based Wind Farms," Energies, MDPI, vol. 7(9), pages 1-20, August.
    12. Sarajcev, Petar & Vujevic, Slavko & Lovric, Dino, 2014. "Interfacing harmonic electromagnetic models of grounding systems with the EMTP-ATP software package," Renewable Energy, Elsevier, vol. 68(C), pages 163-170.
    13. Mahdi Pourakbari-Kasmaei & Farhan Mahmood & Matti Lehtonen, 2020. "Optimized Protection of Pole-Mounted Distribution Transformers against Direct Lightning Strikes," Energies, MDPI, vol. 13(17), pages 1-34, August.
    14. Sarajcev, P. & Vasilj, J. & Jakus, D., 2016. "Monte–Carlo analysis of wind farm lightning-surge transients aided by LINET lightning-detection network data," Renewable Energy, Elsevier, vol. 99(C), pages 501-513.
    15. Kaihua Jiang & Lin Du & Huan Chen & Feng Yang & Yubo Wang, 2019. "Non-Contact Measurement and Polarity Discrimination-Based Identification Method for Direct Lightning Strokes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    16. Jiazheng Lu & Siguo Zhu & Bo Li & Yanjun Tan & Xiudong Zhou & Qinjun Huang & Yuan Zhu & Xinguo Mao, 2018. "Low-Harmonic DC Ice-Melting Device Capable of Simultaneous Reactive Power Compensation," Energies, MDPI, vol. 11(10), pages 1-17, September.
    17. Behnam Ranjbar & Ali Darvishi & Rahman Dashti & Hamid Reza Shaker, 2022. "A Survey of Diagnostic and Condition Monitoring of Metal Oxide Surge Arrester in the Power Distribution Network," Energies, MDPI, vol. 15(21), pages 1-18, October.
    18. Flaviu Mihai Frigura-Iliasa & Sorin Musuroi & Ciprian Sorandaru & Doru Vatau, 2019. "Case Study about the Energy Absorption Capacity of Metal Oxide Varistors with Thermal Coupling," Energies, MDPI, vol. 12(3), pages 1-17, February.
    19. Donghui Luo & Yongxing Cao & Yu Zhang & Shijun Xie & Chenmeng Zhang & Shuping Cao, 2021. "Study on Structural Parameters and Analysis Method of Soil Successive Impulse Discharge Channel," Energies, MDPI, vol. 14(4), pages 1-17, February.
    20. S. Pryor & R. Barthelmie, 2013. "Assessing the vulnerability of wind energy to climate change and extreme events," Climatic Change, Springer, vol. 121(1), pages 79-91, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2112-:d:349814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.