IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp471-485.html
   My bibliography  Save this article

Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives

Author

Listed:
  • kianmehr, Ehsan
  • Nikkhah, Saman
  • Rabiee, Abbas

Abstract

Optimal distribution system reconfiguration (DSR) and distribution generation (DG) allocation are viable solutions for improvement of technical and economic aspects of distribution systems. This paper proposes a stochastic multi-objective DSR (SMO-DSR) model, aims to maximize the DG owner’s profit and minimizes the distribution company’s (DisCo’s) costs. The uncertainties of wind power generation, electricity price, and demand are handled via scenario based approach. The proposed SMO-DSR model is solved via ε-constraint method and the best compromise solution is selected by fuzzy satisfying criterion. The model is a mixed integer non-linear programing (MINLP) problem which is implemented on IEEE 33-bus distribution system in General Algebraic Modeling System (GAMS) environment. To show the effectiveness of the proposed SMO-DSR approach, it is studied in different cases. A sensitivity analysis is also performed to show the effect of contract price of wind energy on the objectives of DisCo and DG owner. The obtained results substantiate the interaction between the DSR and DG allocation problems. Also, it is shown that the contract price of wind energy considerably influences both DG owner and DisCo schedules. Besides, when a compromise is made between the DG owner’s profit and DisCo’s cost, the power losses of the network is reduced.

Suggested Citation

  • kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:471-485
    DOI: 10.1016/j.renene.2018.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    2. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    3. Das, Sangeeta & Das, Debapriya & Patra, Amit, 2017. "Reconfiguration of distribution networks with optimal placement of distributed generations in the presence of remote voltage controlled bus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 772-781.
    4. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, April.
    5. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    6. Niknam, Taher & Fard, Abdollah Kavousi & Seifi, Alireza, 2012. "Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants," Renewable Energy, Elsevier, vol. 37(1), pages 213-225.
    7. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Rui & Kuriyan, Kamal & Kong, Qingyuan & Zhang, Zhihui & Shah, Nilay & Li, Ning & Zhao, Yingru, 2019. "Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Ahmadi, Bahman & Ceylan, Oguzhan & Ozdemir, Aydogan & Fotuhi-Firuzabad, Mahmoud, 2022. "A multi-objective framework for distributed energy resources planning and storage management," Applied Energy, Elsevier, vol. 314(C).
    3. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    4. Xiancheng Wang & Thiruvenkadam Srinivasan & Hyuntae Kim & In-ho Ra, 2020. "Exploration of DG Placement Strategy of Microgrids via FMFO Algorithm: Considering Increasing Power Demand and Diverse DG Combinations," Energies, MDPI, vol. 13(24), pages 1-24, December.
    5. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    6. Huang, Shanshan & Suo, Cai & Guo, Junhong & Lv, Jing & Jing, Rui & Yu, Lei & Fan, Yurui & Ding, Yanming, 2023. "Balancing the water-energy dilemma in nexus system planning with bi-level and multi-uncertainty," Energy, Elsevier, vol. 278(C).
    7. Kumar, Abhishek & Meena, Nand K. & Singh, Arvind R. & Deng, Yan & He, Xiangning & Bansal, R.C. & Kumar, Praveen, 2019. "Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    9. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Ji, Ling & Zhang, Beibei & Huang, Guohe & Wang, Peng, 2020. "A novel multi-stage fuzzy stochastic programming for electricity system structure optimization and planning with energy-water nexus - A case study of Tianjin, China," Energy, Elsevier, vol. 190(C).
    11. Sadeghian, Hamidreza & Wang, Zhifang, 2020. "A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks," Renewable Energy, Elsevier, vol. 147(P1), pages 2179-2194.
    12. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    3. Sedighizadeh, Mostafa & Esmaili, Masoud & Esmaeili, Mobin, 2014. "Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems," Energy, Elsevier, vol. 76(C), pages 920-930.
    4. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    5. Esmaeeli, M. & Kazemi, A. & Shayanfar, H.A. & Haghifam, M.-R., 2015. "Multistage distribution substations planning considering reliability and growth of energy demand," Energy, Elsevier, vol. 84(C), pages 357-364.
    6. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    7. Badran, Ola & Mekhilef, Saad & Mokhlis, Hazlie & Dahalan, Wardiah, 2017. "Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 854-867.
    8. Saman Nikkhah & Arman Alahyari & Adib Allahham & Khaled Alawasa, 2023. "Optimal Integration of Hybrid Energy Systems: A Security-Constrained Network Topology Reconfiguration," Energies, MDPI, vol. 16(6), pages 1-19, March.
    9. Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
    10. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    11. Azizivahed, Ali & Narimani, Hossein & Fathi, Mehdi & Naderi, Ehsan & Safarpour, Hamid Reza & Narimani, Mohammad Rasoul, 2018. "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems," Energy, Elsevier, vol. 147(C), pages 896-914.
    12. Alizadeh, Ali & Esfahani, Moein & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2024. "A useable multi-level BESSs sizing model for low-level data accessibility with risk assessment application under marketization and high uncertainties," Energy, Elsevier, vol. 290(C).
    13. Tolabi, Hajar Bagheri & Ali, Mohd Hasan & Shahrin Bin Md Ayob, & Rizwan, M., 2014. "Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation," Energy, Elsevier, vol. 71(C), pages 507-515.
    14. Sultana, Beenish & Mustafa, M.W. & Sultana, U. & Bhatti, Abdul Rauf, 2016. "Review on reliability improvement and power loss reduction in distribution system via network reconfiguration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 297-310.
    15. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    16. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    17. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    18. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    19. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:471-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.