IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i1p65-70.html
   My bibliography  Save this article

Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources

Author

Listed:
  • Georgilakis, Pavlos S.
  • Katsigiannis, Yiannis A.

Abstract

Evaluation of reliability performance in every power system has to be done within a cost–benefit framework. This approach, however, is a very time consuming task, especially for systems that contain a large number of possible configurations, so simpler techniques referred to the calculation of reliability indices are used. In small autonomous power systems (SAPSs), such an evaluation uses mainly deterministic criteria. This approach, however, cannot be applied in SAPS that contain only renewable energy sources, due to the intermittent nature of the provided energy. In this paper, a complete reliability cost and worth analysis is implemented for these systems, combined with the calculation of some basic probabilistic indices, in order to discover their performance and propose the appropriate of them as a criterion of optimal system configuration. This paper proposes that normalized energy reliability indices as system minutes and energy index of unavailability can be used as adequate criteria of system's optimal performance. This conclusion is validated through a large number of sensitivity analysis studies that are based on different maximum annual loads and different mix of load types.

Suggested Citation

  • Georgilakis, Pavlos S. & Katsigiannis, Yiannis A., 2009. "Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources," Renewable Energy, Elsevier, vol. 34(1), pages 65-70.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:65-70
    DOI: 10.1016/j.renene.2008.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810800089X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J.K., 2007. "An integrated model for performance simulation of hybrid wind–diesel systems," Renewable Energy, Elsevier, vol. 32(9), pages 1544-1564.
    2. Kaldellis, J.K. & Koronakis, P. & Kavadias, K., 2004. "Energy balance analysis of a stand-alone photovoltaic system, including variable system reliability impact," Renewable Energy, Elsevier, vol. 29(7), pages 1161-1180.
    3. Swift-Hook, D.T. & Ter-Gazarian, A.G., 1994. "The value of storage on power systems with intermittent energy sources," Renewable Energy, Elsevier, vol. 5(5), pages 1479-1482.
    4. Swift-Hook, DT, 1997. "The whole life costing of wind energy," Renewable Energy, Elsevier, vol. 10(2), pages 247-251.
    5. El-Tamaly, Hassan Hussein & Mohammed, Adel A. Elbaset, 2006. "Impact of interconnection photovoltaic/wind system with utility on their reliability using a fuzzy scheme," Renewable Energy, Elsevier, vol. 31(15), pages 2475-2491.
    6. Tanrioven, M. & Alam, M.S., 2006. "Reliability modeling and analysis of stand-alone PEM fuel cell power plants," Renewable Energy, Elsevier, vol. 31(7), pages 915-933.
    7. Desouki, H & Lotfy, A.A, 2001. "Reliability improvement of isolated generating systems by photovoltaic ac fusion converters," Renewable Energy, Elsevier, vol. 23(3), pages 391-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim, Nissar Mohammad & Manzoor, Sadia & Soin, Norhayati, 2013. "Unification of contemporary negative bias temperature instability models for p-MOSFET energy degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 776-780.
    2. Khorshidi, Reza & Shabaninia, Faridon & Niknam, Taher, 2016. "A new smart approach for state estimation of distribution grids considering renewable energy sources," Energy, Elsevier, vol. 94(C), pages 29-37.
    3. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    4. Vibhu Jately & Balaji Venkateswaran V. & Stefan Azzopardi & Brian Azzopardi, 2021. "Design and Performance Investigation of a Pilot Micro-Grid in the Mediterranean: MCAST Case Study," Energies, MDPI, vol. 14(20), pages 1-32, October.
    5. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2024. "Enhancing accuracy of flexibility characterization in integrated energy system design: A variable temporal resolution optimization method," Energy, Elsevier, vol. 288(C).
    6. Niknam, Taher & Firouzi, Bahman Bahmani, 2009. "A practical algorithm for distribution state estimation including renewable energy sources," Renewable Energy, Elsevier, vol. 34(11), pages 2309-2316.
    7. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    8. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    9. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2011. "Analysis on reliability aspects of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1210-1216, February.
    10. Niknam, Taher & Meymand, Hamed Zeinoddini & Nayeripour, Majid, 2010. "A practical algorithm for optimal operation management of distribution network including fuel cell power plants," Renewable Energy, Elsevier, vol. 35(8), pages 1696-1714.
    11. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic model for market-based capacity investment decision considering stochastic characteristic of wind power," Renewable Energy, Elsevier, vol. 36(8), pages 2205-2219.
    12. Yu, Hsiang-Hua & Chang, Kuo-Hao & Hsu, Hsin-Wei & Cuckler, Robert, 2019. "A Monte Carlo simulation-based decision support system for reliability analysis of Taiwan’s power system: Framework and empirical study," Energy, Elsevier, vol. 178(C), pages 252-262.
    13. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
    14. Tan, Yingjie & Meegahapola, Lasantha & Muttaqi, Kashem M., 2014. "A review of technical challenges in planning and operation of remote area power supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 876-889.
    15. Husein, Munir & Chung, Il-Yop, 2018. "Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives," Applied Energy, Elsevier, vol. 225(C), pages 273-289.
    16. Apostolos C. Tsolakis & Ilias Kalamaras & Thanasis Vafeiadis & Lampros Zyglakis & Angelina D. Bintoudi & Adamantia Chouliara & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2020. "Towards a Holistic Microgrid Performance Framework and a Data-Driven Assessment Analysis," Energies, MDPI, vol. 13(21), pages 1-36, November.
    17. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization," Renewable Energy, Elsevier, vol. 63(C), pages 194-204.
    18. Kristjanpoller, Fredy & Crespo, Adolfo & Barberá, Luis & Viveros, Pablo, 2017. "Biomethanation plant assessment based on reliability impact on operational effectiveness," Renewable Energy, Elsevier, vol. 101(C), pages 301-310.
    19. Shen, Yung-Chi & Lin, Grace T.R. & Li, Kuang-Pin & Yuan, Benjamin J.C., 2010. "An assessment of exploiting renewable energy sources with concerns of policy and technology," Energy Policy, Elsevier, vol. 38(8), pages 4604-4616, August.
    20. Duccio Baldi & Magda Moner-Girona & Elena Fumagalli & Fernando Fahl, 2022. "Planning sustainable electricity solutions for refugee settlements in sub-Saharan Africa," Nature Energy, Nature, vol. 7(4), pages 369-379, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    2. Koeppel, Gaudenz & Andersson, Göran, 2009. "Reliability modeling of multi-carrier energy systems," Energy, Elsevier, vol. 34(3), pages 235-244.
    3. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    4. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    5. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    6. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    7. Nie, S. & Huang, Charley Z. & Huang, G.H. & Li, Y.P. & Chen, J.P. & Fan, Y.R. & Cheng, G.H., 2016. "Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing," Applied Energy, Elsevier, vol. 162(C), pages 772-786.
    8. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    9. Krumdieck, Susan & Hamm, Andreas, 2009. "Strategic analysis methodology for energy systems with remote island case study," Energy Policy, Elsevier, vol. 37(9), pages 3301-3313, September.
    10. Benmouna, Amel & Becherif, Mohamed & Depernet, Daniel & Ebrahim, Mohamed A., 2018. "Novel Energy Management Technique for Hybrid Electric Vehicle via Interconnection and Damping Assignment Passivity Based Control," Renewable Energy, Elsevier, vol. 119(C), pages 116-128.
    11. Urtasun, Andoni & Sanchis, Pablo & Barricarte, David & Marroyo, Luis, 2014. "Energy management strategy for a battery-diesel stand-alone system with distributed PV generation based on grid frequency modulation," Renewable Energy, Elsevier, vol. 66(C), pages 325-336.
    12. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    13. Seme, Sebastijan & Sredenšek, Klemen & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2018. "Optimal price of electricity of solar power plants and small hydro power plants – Technical and economical part of investments," Energy, Elsevier, vol. 157(C), pages 87-95.
    14. Kaldellis, John & Kavadias, Kosmas & Zafirakis, Dimitrios, 2012. "Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers," Renewable Energy, Elsevier, vol. 46(C), pages 179-191.
    15. Whiteley, M & Dunnett, S & Jackson, L, 2020. "Simulation of polymer electrolyte membrane fuel cell degradation using an integrated Petri Net and 0D model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2012. "Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers," Energy Policy, Elsevier, vol. 42(C), pages 105-117.
    17. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    18. Boulogiorgou, D. & Ktenidis, P., 2020. "TILOS local scale Technology Innovation enabling low carbon energy transition," Renewable Energy, Elsevier, vol. 146(C), pages 397-403.
    19. Khoshrou, Abdolrahman & Dorsman, André B. & Pauwels, Eric J., 2019. "The evolution of electricity price on the German day-ahead market before and after the energy switch," Renewable Energy, Elsevier, vol. 134(C), pages 1-13.
    20. Corrêa, Tomás Perpétuo & Seleme, Seleme Isaac & Silva, Selênio Rocha, 2012. "Efficiency optimization in stand-alone photovoltaic pumping system," Renewable Energy, Elsevier, vol. 41(C), pages 220-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:1:p:65-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.