IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v29y2014icp804-827.html
   My bibliography  Save this article

Artificial neural networks for controlling wind–PV power systems: A review

Author

Listed:
  • Karabacak, Kerim
  • Cetin, Numan

Abstract

Nowadays, renewable energy systems are taking place than the conventional energy systems. Especially, PV systems and wind energy conversion systems (WECS) are taking a big role in supplying world's energy necessity. Efficiency of such types of renewable energy systems is being tried to be improved by using different methods. Besides conventional methods, intelligent system designs are seem to be more useful to improve efficiency of renewable energy systems. However, artificial neural networks (ANN) have many usage areas in modeling, simulation and control of renewable energy systems. ANNs are easy to use and to implement renewable energy system designs. In this paper, artificial neural network applications of PV, WECS and hybrid renewable energy systems which consist of PV and WECS are presented. Usage of neural network structures in such types of systems have been motivated.

Suggested Citation

  • Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
  • Handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:804-827
    DOI: 10.1016/j.rser.2013.08.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113006102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.08.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Alawi, Ali & M Al-Alawi, Saleh & M Islam, Syed, 2007. "Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network," Renewable Energy, Elsevier, vol. 32(8), pages 1426-1439.
    2. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    3. El-Tamaly, Hassan Hussein & Mohammed, Adel A. Elbaset, 2006. "Impact of interconnection photovoltaic/wind system with utility on their reliability using a fuzzy scheme," Renewable Energy, Elsevier, vol. 31(15), pages 2475-2491.
    4. Almonacid, F. & Rus, C. & Hontoria, L. & Muñoz, F.J., 2010. "Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods," Renewable Energy, Elsevier, vol. 35(5), pages 973-980.
    5. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2011. "Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation," Energy, Elsevier, vol. 36(1), pages 348-359.
    6. Almonacid, F. & Rus, C. & Hontoria, L. & Fuentes, M. & Nofuentes, G., 2009. "Characterisation of Si-crystalline PV modules by artificial neural networks," Renewable Energy, Elsevier, vol. 34(4), pages 941-949.
    7. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    8. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    9. Moghimi Ghadikolaei, Hadi & Ahmadi, Abdollah & Aghaei, Jamshid & Najafi, Meysam, 2012. "Risk constrained self-scheduling of hydro/wind units for short term electricity markets considering intermittency and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4734-4743.
    10. Bahgat, A.B.G. & Helwa, N.H. & Ahmad, G.E. & El Shenawy, E.T., 2005. "Maximum power point traking controller for PV systems using neural networks," Renewable Energy, Elsevier, vol. 30(8), pages 1257-1268.
    11. Nayeripour, Majid & Mahboubi-Moghaddam, Esmaeil & Aghaei, Jamshid & Azizi-Vahed, Ali, 2013. "Multi-objective placement and sizing of DGs in distribution networks ensuring transient stability using hybrid evolutionary algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 759-767.
    12. Mellit, A. & Kalogirou, S.A. & Shaari, S. & Salhi, H. & Hadj Arab, A., 2008. "Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system," Renewable Energy, Elsevier, vol. 33(7), pages 1570-1590.
    13. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    14. Almonacid, F. & Rus, C. & Pérez, P.J. & Hontoria, L., 2009. "Estimation of the energy of a PV generator using artificial neural network," Renewable Energy, Elsevier, vol. 34(12), pages 2743-2750.
    15. Ghasemi, Hosein & Gharehpetian, G.B. & Nabavi-Niaki, Seyed Ali & Aghaei, Jamshid, 2013. "Overview of subsynchronous resonance analysis and control in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 234-243.
    16. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    17. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    18. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    2. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    3. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    4. Ali Jallal, Mohammed & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers," Renewable Energy, Elsevier, vol. 149(C), pages 1182-1196.
    5. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    6. Kandemir, Ekrem & Cetin, Numan S. & Borekci, Selim, 2017. "A comprehensive overview of maximum power extraction methods for PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 93-112.
    7. Yue, Tian & Shen, Boxiong & Gao, Pei, 2022. "Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    2. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    3. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.
    4. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    5. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    6. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    7. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    8. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    9. Mellit, A. & Sağlam, S. & Kalogirou, S.A., 2013. "Artificial neural network-based model for estimating the produced power of a photovoltaic module," Renewable Energy, Elsevier, vol. 60(C), pages 71-78.
    10. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.
    11. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    12. Antonello Rosato & Rosa Altilio & Rodolfo Araneo & Massimo Panella, 2017. "Prediction in Photovoltaic Power by Neural Networks," Energies, MDPI, vol. 10(7), pages 1-25, July.
    13. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    14. Manuel Angel Gadeo-Martos & Antonio Jesús Yuste-Delgado & Florencia Almonacid Cruz & Jose-Angel Fernandez-Prieto & Joaquin Canada-Bago, 2019. "Modeling a High Concentrator Photovoltaic Module Using Fuzzy Rule-Based Systems," Energies, MDPI, vol. 12(3), pages 1-22, February.
    15. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    16. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    17. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    18. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    19. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    20. Nasiri, Reza & Radan, Ahmad, 2011. "Pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays," Renewable Energy, Elsevier, vol. 36(2), pages 858-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:804-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.