IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i7p915-933.html
   My bibliography  Save this article

Reliability modeling and analysis of stand-alone PEM fuel cell power plants

Author

Listed:
  • Tanrioven, M.
  • Alam, M.S.

Abstract

This paper presents a methodology for modeling and calculating PEM FCPP reliability. It includes the development of a state-space method to calculate the stand-alone PEM FCPP reliability using Markov Model (MM). The state-space method includes different states such as operation, derated, fully faulted or maintenance since FCPP (FC) power plants are subject to a number of possible outage and derated states. The aging failures in the state-space generation model of a PEM FCPP are estimated based on the assumption that failure and repair rates of the components change with operational age of FC. The functional relationship between FC age and transition rates, namely failure and repair rates are estimated based on the fuzzy set theory and expert knowledge. The simulation results are obtained using matlab software package for a 5kW stand-alone PEM fuel cell, which supplies power to a typical residential house.

Suggested Citation

  • Tanrioven, M. & Alam, M.S., 2006. "Reliability modeling and analysis of stand-alone PEM fuel cell power plants," Renewable Energy, Elsevier, vol. 31(7), pages 915-933.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:7:p:915-933
    DOI: 10.1016/j.renene.2005.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105001187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgilakis, Pavlos S. & Katsigiannis, Yiannis A., 2009. "Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources," Renewable Energy, Elsevier, vol. 34(1), pages 65-70.
    2. Koeppel, Gaudenz & Andersson, Göran, 2009. "Reliability modeling of multi-carrier energy systems," Energy, Elsevier, vol. 34(3), pages 235-244.
    3. Whiteley, M & Dunnett, S & Jackson, L, 2020. "Simulation of polymer electrolyte membrane fuel cell degradation using an integrated Petri Net and 0D model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    5. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    6. Benmouna, Amel & Becherif, Mohamed & Depernet, Daniel & Ebrahim, Mohamed A., 2018. "Novel Energy Management Technique for Hybrid Electric Vehicle via Interconnection and Damping Assignment Passivity Based Control," Renewable Energy, Elsevier, vol. 119(C), pages 116-128.
    7. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    8. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:7:p:915-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.