IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v26y2013icp776-780.html
   My bibliography  Save this article

Unification of contemporary negative bias temperature instability models for p-MOSFET energy degradation

Author

Listed:
  • Karim, Nissar Mohammad
  • Manzoor, Sadia
  • Soin, Norhayati

Abstract

In this article, we present contemporary research advancements on negative bias temperature instability (NBTI) degradation models which are responsible for p-MOSFET energy degradation. Hence, we propose a unified theory on the recent models in order to predict the transistor aging by considering the energy effect. Development of the newly modified model in this article is followed by a reassesment on NBTI models considering energy degradation. Unlike many of the previous models, the proposed theory of NBTI degradation projects the reliability in both stress and recovery phase; which follows power law.

Suggested Citation

  • Karim, Nissar Mohammad & Manzoor, Sadia & Soin, Norhayati, 2013. "Unification of contemporary negative bias temperature instability models for p-MOSFET energy degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 776-780.
  • Handle: RePEc:eee:rensus:v:26:y:2013:i:c:p:776-780
    DOI: 10.1016/j.rser.2013.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211300381X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crawford, R.H. & Treloar, G.J. & Fuller, R.J. & Bazilian, M., 2006. "Life-cycle energy analysis of building integrated photovoltaic systems (BiPVs) with heat recovery unit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 559-575, December.
    2. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    3. Midilli, A. & Ay, M. & Dincer, I. & Rosen, M. A., 2005. "On hydrogen and hydrogen energy strategies: I: current status and needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(3), pages 255-271, June.
    4. Iniyan, S & Suganthi, L & Jagadeesan, T.R & Samuel, Anand A, 2000. "Reliability based socio economic optimal renewable energy model for India," Renewable Energy, Elsevier, vol. 19(1), pages 291-297.
    5. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 36(11), pages 2809-2821.
    6. Ozgener, Onder & Ozgener, Leyla, 2007. "Exergy and reliability analysis of wind turbine systems: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1811-1826, October.
    7. Georgilakis, Pavlos S. & Katsigiannis, Yiannis A., 2009. "Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources," Renewable Energy, Elsevier, vol. 34(1), pages 65-70.
    8. Lee, M.Q. & Lu, C.N. & Huang, H.S., 2009. "Reliability and cost analyses of electricity collection systems of a marine current farm--A Taiwanese case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2012-2021, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    2. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    3. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    4. Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
    5. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    6. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    7. Baskut, Omer & Ozgener, Onder & Ozgener, Leyla, 2010. "Effects of meteorological variables on exergetic efficiency of wind turbine power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3237-3241, December.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    9. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    10. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization," Renewable Energy, Elsevier, vol. 63(C), pages 194-204.
    11. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    12. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    13. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    14. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    15. Duccio Baldi & Magda Moner-Girona & Elena Fumagalli & Fernando Fahl, 2022. "Planning sustainable electricity solutions for refugee settlements in sub-Saharan Africa," Nature Energy, Nature, vol. 7(4), pages 369-379, April.
    16. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    17. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    18. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    19. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    20. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:26:y:2013:i:c:p:776-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.