IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i7p1161-1180.html
   My bibliography  Save this article

Energy balance analysis of a stand-alone photovoltaic system, including variable system reliability impact

Author

Listed:
  • Kaldellis, J.K.
  • Koronakis, P.
  • Kavadias, K.

Abstract

Official statistics estimate that almost two billion people have no direct access to electrical networks, 500,000 of them living in European Union and more than one tenth of them in Greece. An autonomous photovoltaic system is one of the most interesting and environmental friendly technological solutions for the electrification of remote consumers or entire rural areas. The primary objective of this current study is to determine the optimum dimensions of an appropriate stand-alone photovoltaic system, able to guarantee the coverage of remote consumers energy demand located in typical Greek territories using long-term measurements, under the restriction of minimum initial cost. Accordingly, the impact of acceptable reliability level on the stand-alone photovoltaic system energy behaviour and initial cost is also examined. Finally, special emphasis is laid on the detailed energy balance analysis of selected stand-alone photovoltaic system configurations, on an hourly basis at least. According to the results obtained, a properly sized stand-alone photovoltaic system is a motivating prospect for the energy demand problems of numerous existing isolated consumers all around Greece.

Suggested Citation

  • Kaldellis, J.K. & Koronakis, P. & Kavadias, K., 2004. "Energy balance analysis of a stand-alone photovoltaic system, including variable system reliability impact," Renewable Energy, Elsevier, vol. 29(7), pages 1161-1180.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:7:p:1161-1180
    DOI: 10.1016/j.renene.2003.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103003884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhuiyan, M.M.H. & Ali Asgar, M., 2003. "Sizing of a stand-alone photovoltaic power system at Dhaka," Renewable Energy, Elsevier, vol. 28(6), pages 929-938.
    2. Notton, G. & Muselli, M. & Poggi, P., 1998. "Costing of a stand-alone photovoltaic system," Energy, Elsevier, vol. 23(4), pages 289-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaldellis, John & Kavadias, Kosmas & Zafirakis, Dimitrios, 2012. "Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers," Renewable Energy, Elsevier, vol. 46(C), pages 179-191.
    2. Corrêa, Tomás Perpétuo & Seleme, Seleme Isaac & Silva, Selênio Rocha, 2012. "Efficiency optimization in stand-alone photovoltaic pumping system," Renewable Energy, Elsevier, vol. 41(C), pages 220-226.
    3. Kaldellis, John & Zafirakis, Dimitrios & Kavadias, Kosmas & Kondili, Emilia, 2012. "Optimum PV-diesel hybrid systems for remote consumers of the Greek territory," Applied Energy, Elsevier, vol. 97(C), pages 61-67.
    4. Georgilakis, Pavlos S. & Katsigiannis, Yiannis A., 2009. "Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources," Renewable Energy, Elsevier, vol. 34(1), pages 65-70.
    5. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    6. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    7. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    8. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    9. Kaldellis, J.K. & Ninou, I. & Zafirakis, D., 2011. "Minimum long-term cost solution for remote telecommunication stations on the basis of photovoltaic-based hybrid power systems," Energy Policy, Elsevier, vol. 39(5), pages 2512-2527, May.
    10. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    11. Kaldellis, J.K. & Zafirakis, D., 2007. "Present situation and future prospects of electricity generation in Aegean Archipelago islands," Energy Policy, Elsevier, vol. 35(9), pages 4623-4639, September.
    12. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2012. "Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers," Energy Policy, Elsevier, vol. 42(C), pages 105-117.
    13. Seme, Sebastijan & Sredenšek, Klemen & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2018. "Optimal price of electricity of solar power plants and small hydro power plants – Technical and economical part of investments," Energy, Elsevier, vol. 157(C), pages 87-95.
    14. Kaldellis, J.K., 2008. "Critical evaluation of the hydropower applications in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 218-234, January.
    15. Kaldellis, J.K., 2010. "Optimum hybrid photovoltaic-based solution for remote telecommunication stations," Renewable Energy, Elsevier, vol. 35(10), pages 2307-2315.
    16. Moharil, Ravindra M. & Kulkarni, Prakash S., 2009. "A case study of solar photovoltaic power system at Sagardeep Island, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 673-681, April.
    17. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    18. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    2. Notton, G. & Muselli, M. & Poggi, P. & Louche, A., 1998. "Sizing reduction induced by the choice of electrical applicances options in a stand-alone photovolatic production," Renewable Energy, Elsevier, vol. 15(1), pages 581-584.
    3. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    4. Jinyoung Song & Yosoon Choi, 2016. "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, MDPI, vol. 9(2), pages 1-13, February.
    5. Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Joel Donaldo Verdugo-Diaz, 2018. "Stand-Alone Photovoltaic System Assessment in Warmer Urban Areas in Mexico," Energies, MDPI, vol. 11(2), pages 1-13, January.
    6. Al-Smairan, Mohammad, 2012. "Application of photovoltaic array for pumping water as an alternative to diesel engines in Jordan Badia, Tall Hassan station: Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4500-4507.
    7. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    8. Gomes, I.L.R. & Pousinho, H.M.I. & Melício, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    9. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    10. C. Harmon, 2000. "Experience Curves of Photovoltaic Technology," Working Papers ir00014, International Institute for Applied Systems Analysis.
    11. Amro M. Elshurafa & Mohammad H. Aldubyan, 2019. "State-of-Charge Effects on Standalone Solar-Storage Systems in Hot Climates: A Case Study in Saudi Arabia," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    12. Ren, Zhengen & Paevere, Phillip & Chen, Dong, 2019. "Feasibility of off-grid housing under current and future climates," Applied Energy, Elsevier, vol. 241(C), pages 196-211.
    13. Carrasco, L.M. & Martín-Campo, F.J. & Narvarte, L. & Ortuño, M.T. & Vitoriano, B., 2016. "Design of maintenance structures for rural electrification with solar home systems. The case of the Moroccan program," Energy, Elsevier, vol. 117(P1), pages 47-57.
    14. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    15. Uzair, Muhammad & Rehman, Naveed ur & Yousuf, Muhammad Uzair, 2022. "Sensitivity analysis of capital and energy production cost for off-grid building integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 186(C), pages 195-206.
    16. Kaldellis, J.K. & Kavadias, K.A., 2007. "Cost-benefit analysis of remote hybrid wind-diesel power stations: Case study Aegean Sea islands," Energy Policy, Elsevier, vol. 35(3), pages 1525-1538, March.
    17. Song, Jinyoung & Choi, Yosoon, 2015. "Design of photovoltaic systems to power aerators for natural purification of acid mine drainage," Renewable Energy, Elsevier, vol. 83(C), pages 759-766.
    18. Yosoon Choi & Jinyoung Song, 2016. "Sustainable Development of Abandoned Mine Areas Using Renewable Energy Systems: A Case Study of the Photovoltaic Potential Assessment at the Tailings Dam of Abandoned Sangdong Mine, Korea," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    19. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    20. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:7:p:1161-1180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.