IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipds096014812401975x.html
   My bibliography  Save this article

Spectral correction of photovoltaic module electrical properties

Author

Listed:
  • Sang, Wenhu
  • Ma, Yuxin
  • Li, Senyuan
  • Xue, Peng
  • Li, Bojia
  • Peng, Jinqing
  • Fan, Man

Abstract

Except for irradiance and temperature, the distribution of solar spectrum also affects the electrical performance of photovoltaic (PV) modules. To explore the effect, this study conducted long-term experimental measurements on the wide range of full solar radiation spectrum with monocrystalline silicon (m-Si) and cadmium telluride (CdTe), and established new spectral correction function (SCF) under horizontal conditions based on the average photon energy (APE). It is verified with a good agreement R2 of 0.95, and the maximum RMSE is only 0.017 %. Moreover, the application of the SCFs to building vertical façade has also been well verified, and the accuracy of electrical performance prediction can be improved by 14.51 % (m-Si) and 3.57 % (CdTe). In addition, this study combines the annual horizontal total solar radiation spectrum in Beijing and gives the annual spectral gain and loss (SGL) ratio of two PV panels. The power generation performance of the two PV modules under the actual spectrum will be underestimated for about 53.5 % and 99.7 % of the time in the whole year. This study broadens the dimension of evaluating the electrical performance parameters of PV panels and provides a basis and guidance for the accurate prediction and calculation of photovoltaic power generation.

Suggested Citation

  • Sang, Wenhu & Ma, Yuxin & Li, Senyuan & Xue, Peng & Li, Bojia & Peng, Jinqing & Fan, Man, 2024. "Spectral correction of photovoltaic module electrical properties," Renewable Energy, Elsevier, vol. 237(PD).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pd:s096014812401975x
    DOI: 10.1016/j.renene.2024.121907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401975X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eke, R. & Betts, T.R. & Gottschalg, R.,, 2017. "Spectral irradiance effects on the outdoor performance of photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 429-434.
    2. Yao, Wanxiang & Yue, Qi & Cao, Lihui & Ren, Lijie & Jiang, Leijie & Kong, Xiangru & Gao, Weijun, 2024. "The impact of spectral distribution on photovoltaic power generation and its quantitative evaluation model," Applied Energy, Elsevier, vol. 358(C).
    3. Huang, Lin & Song, Zihao & Dong, Qichang & Song, Ye & Zhao, Xiaoqing & Qi, Jiacheng & Shi, Long, 2024. "Surface temperature and power generation efficiency of PV arrays with various row spacings: A full-scale outdoor experimental study," Applied Energy, Elsevier, vol. 367(C).
    4. Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation," Applied Energy, Elsevier, vol. 363(C).
    5. Wang, Shuhao & Peng, Jinqing & Wang, Meng & Xue, Peng & Luo, Yimo & Ma, Tao & Zhao, Yifan, 2023. "Evaluation of the energy conversion performance of different photovoltaic materials with measured solar spectral irradiance," Renewable Energy, Elsevier, vol. 219(P1).
    6. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    7. Zeng, Qingrui & Hafeez, Muhammad & Sher, Falak & Ullah, Sana, 2024. "Environmental higher education, formal finance, energy security risk, and renewable energy investment in China: An aggregate and disaggregate analysis," Renewable Energy, Elsevier, vol. 232(C).
    8. Nofuentes, G. & García-Domingo, B. & Muñoz, J.V. & Chenlo, F., 2014. "Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution," Applied Energy, Elsevier, vol. 113(C), pages 302-309.
    9. Neves, Guilherme & Vilela, Waldeir & Pereira, Enio & Yamasoe, Marcia & Nofuentes, Gustavo, 2021. "Spectral impact on PV in low-latitude sites: The case of southeastern Brazil," Renewable Energy, Elsevier, vol. 164(C), pages 1306-1319.
    10. Chantana, Jakapan & Ueno, Seiya & Ota, Yasuyuki & Nishioka, Kensuke & Minemoto, Takashi, 2015. "Uniqueness verification of direct solar spectral index for estimating outdoor performance of concentrator photovoltaic systems," Renewable Energy, Elsevier, vol. 75(C), pages 762-766.
    11. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    12. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
    13. Wang, Shuhao & Peng, Jinqing & Luo, Yimo & Ma, Tao & Xue, Peng & Wu, Yupeng & Zhang, Qiangzhi & Zhou, Jiayu, 2024. "Development of an engineering-friendly evaluation model for solar spectral irradiance using readily accessible subaerial meteorology," Renewable Energy, Elsevier, vol. 237(PA).
    14. Sirisamphanwong, Chattariya & Ketjoy, Nipon, 2012. "Impact of spectral irradiance distribution on the outdoor performance of photovoltaic system under Thai climatic conditions," Renewable Energy, Elsevier, vol. 38(1), pages 69-74.
    15. Jha, Aprajeeta & Tripathy, P.P., 2019. "Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions," Renewable Energy, Elsevier, vol. 135(C), pages 856-865.
    16. Daxini, Rajiv & Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2022. "Direct spectral distribution characterisation using the Average Photon Energy for improved photovoltaic performance modelling," Renewable Energy, Elsevier, vol. 201(P1), pages 1176-1188.
    17. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    2. Kinsey, Geoffrey S. & Riedel-Lyngskær, Nicholas C. & Miguel, Alonso-Abella & Boyd, Matthew & Braga, Marília & Shou, Chunhui & Cordero, Raul R. & Duck, Benjamin C. & Fell, Christopher J. & Feron, Sarah, 2022. "Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide," Renewable Energy, Elsevier, vol. 196(C), pages 995-1016.
    3. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe & Ruan, Yingjun, 2025. "A revolutionary neural network architecture with interpretability and flexibility based on Kolmogorov–Arnold for solar radiation and temperature forecasting," Applied Energy, Elsevier, vol. 378(PA).
    4. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    5. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Conde, Luis A. & Angulo, José R. & Sevillano-Bendezú, Miguel Á. & Nofuentes, Gustavo & Töfflinger, Jan A. & de la Casa, Juan, 2021. "Spectral effects on the energy yield of various photovoltaic technologies in Lima (Peru)," Energy, Elsevier, vol. 223(C).
    7. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
    8. Chong, Kok-Keong & Khlyabich, Petr P. & Hong, Kai-Jeat & Reyes-Martinez, Marcos & Rand, Barry P. & Loo, Yueh-Lin, 2016. "Comprehensive method for analyzing the power conversion efficiency of organic solar cells under different spectral irradiances considering both photonic and electrical characteristics," Applied Energy, Elsevier, vol. 180(C), pages 516-523.
    9. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    10. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    11. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    12. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    13. Del Pero, Claudio & Aste, Niccolò & Leonforte, Fabrizio, 2021. "The effect of rain on photovoltaic systems," Renewable Energy, Elsevier, vol. 179(C), pages 1803-1814.
    14. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    15. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    16. Imai, Yurie & Chantana, Jakapan & Kawano, Yu & Hishikawa, Yoshihiro & Minemoto, Takashi, 2019. "Description of performance degradation of photovoltaic modules using spectral mismatch correction factor under different irradiance levels," Renewable Energy, Elsevier, vol. 141(C), pages 444-450.
    17. Chao Huang & Michael Edesess & Alain Bensoussan & Kwok L. Tsui, 2016. "Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System," Energies, MDPI, vol. 9(5), pages 1, May.
    18. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).
    19. Wang, Shuhao & Peng, Jinqing & Wang, Meng & Xue, Peng & Luo, Yimo & Ma, Tao & Zhao, Yifan, 2023. "Evaluation of the energy conversion performance of different photovoltaic materials with measured solar spectral irradiance," Renewable Energy, Elsevier, vol. 219(P1).
    20. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pd:s096014812401975x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.