IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019451.html
   My bibliography  Save this article

The impact of spectral distribution on photovoltaic power generation and its quantitative evaluation model

Author

Listed:
  • Yao, Wanxiang
  • Yue, Qi
  • Cao, Lihui
  • Ren, Lijie
  • Jiang, Leijie
  • Kong, Xiangru
  • Gao, Weijun

Abstract

With the implementation of energy saving and carbon reduction, the quantitative analysis of solar energy spectral characteristics has been paid more and more attention. Currently, the international test standards provide a spectral distribution with a large span between different wavebands, which makes it difficult to meet the needs of special spectral wavebands. In this paper, based on the principle of spectral splitting, the spectral distribution of solar radiation models (SDSR models) is proposed, and the differences in the spectral distributions of natural outdoor and artificial indoor light sources are evaluated. Firstly, the differences in PV module output power between the outdoor light sources and indoor artificial light sources are assessed in terms of inclination angle and solar radiation, respectively. Secondly, based on that difference, the influencing factors of the spectral distribution of solar radiation are investigated, and the SDSR models of different wavelengths is established based on spectral analysis results. Finally, based on the established SDSR models, the spectral distribution modified models (SDM models) for different inclination angles under artificial light sources is proposed. By comparing the calculated values of the SDM models with the measured data, the calculated values of the model are close to the measured data at different incidence angles. The SDM models proposed in this paper shortens the gap between the spectral distribution of the artificial light source and the outdoor natural light source, and reveal the influence mechanism of the difference in the output power of indoor and outdoor PV modules from the perspective of the spectral distribution. The results can provide guidance for the spectral distribution of solar radiation and the quantitative modification of the artificial light source.

Suggested Citation

  • Yao, Wanxiang & Yue, Qi & Cao, Lihui & Ren, Lijie & Jiang, Leijie & Kong, Xiangru & Gao, Weijun, 2024. "The impact of spectral distribution on photovoltaic power generation and its quantitative evaluation model," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019451
    DOI: 10.1016/j.apenergy.2023.122581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eke, R. & Betts, T.R. & Gottschalg, R.,, 2017. "Spectral irradiance effects on the outdoor performance of photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 429-434.
    2. Jin, Jian & Hao, Yong & Jin, Hongguang, 2019. "A universal solar simulator for focused and quasi-collimated beams," Applied Energy, Elsevier, vol. 235(C), pages 1266-1276.
    3. Esen, Vedat & Sağlam, Şafak & Oral, Bülent, 2017. "Light sources of solar simulators for photovoltaic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1240-1250.
    4. Zhou, Yi-Peng & Li, Ming-Jia & Hu, Yi-Huang & Ma, Teng, 2020. "Design and experimental investigation of a novel full solar spectrum utilization system," Applied Energy, Elsevier, vol. 260(C).
    5. Sowmy, Daniel Setrak & Schiavon Ara, Paulo José & Prado, Racine T.A., 2017. "Uncertainties associated with solar collector efficiency test using an artificial solar simulator," Renewable Energy, Elsevier, vol. 108(C), pages 644-651.
    6. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Qibin & Xuan, Yimin & Liu, Xianglei & Yang, Lili & Lian, Wenlei & Zhang, Jin, 2020. "A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping," Applied Energy, Elsevier, vol. 270(C).
    2. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    3. Xing, Xueli & Xin, Yu & Sun, Fan & Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2021. "Test of a spectral splitting prototype hybridizing photovoltaic and solar syngas power generation," Applied Energy, Elsevier, vol. 304(C).
    4. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    5. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    6. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    7. Youngjin Choi, 2018. "An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions," Energies, MDPI, vol. 11(7), pages 1-13, June.
    8. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    9. Weifan Long & Xiaofei Chen & Qingsong Ma & Xindong Wei & Qiao Xi, 2022. "An Evaluation of the PV Integrated Dynamic Overhangs Based on Parametric Performance Design Method: A Case Study of a Student Apartment in China," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    10. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).
    11. Johnathon, Chris & Agalgaonkar, Ashish Prakash & Planiden, Chayne & Kennedy, Joel, 2023. "A proposed hedge-based energy market model to manage renewable intermittency," Renewable Energy, Elsevier, vol. 207(C), pages 376-384.
    12. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
    13. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).
    14. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    15. Sobek, Szymon & Werle, Sebastian, 2019. "Solar pyrolysis of waste biomass: Part 1 reactor design," Renewable Energy, Elsevier, vol. 143(C), pages 1939-1948.
    16. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Gao, Fang & Hu, Rongzhao & Yin, Linfei, 2023. "Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems," Energy, Elsevier, vol. 264(C).
    19. Li, Jieyang & Lin, Meng, 2021. "Unified design guidelines for high flux solar simulator with controllable flux vector," Applied Energy, Elsevier, vol. 281(C).
    20. Li, Jing & Ren, Xiao & Yuan, Weiqi & Li, Zhaomeng & Pei, Gang & Su, Yuehong & Kutlu, Çağrı & Ji, Jie & Riffat, Saffa, 2018. "Experimental study on a novel photovoltaic thermal system using amorphous silicon cells deposited on stainless steel," Energy, Elsevier, vol. 159(C), pages 786-798.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.