IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017287.html
   My bibliography  Save this article

Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application

Author

Listed:
  • Zhang, Yanyun
  • Xue, Peng
  • Zhao, Yifan
  • Zhang, Qianqian
  • Bai, Gongxun
  • Peng, Jinqing
  • Li, Bojia

Abstract

Fine description for regional solar spectra has always been critical for improving solar energy utilization. However, it is difficult and complex to implement due to large amount and high-dimensional characteristics of the measured solar spectra. To address the above challenges, this study proposed a data-driven method to describe regional solar spectra using 211,877 global horizontal irradiance spectra in Beijing area as case data. Firstly, the dimensions of each measured spectrum were reduced from 2,221 to six using the deep autoencoder. Then, all dimensionality-reduced measured spectra were categorized into five clusters using the agglomerative hierarchical clustering. The clustering results exhibited notable variations across different months and dates. Finally, the local reference spectra were determined based on clustering results, and their effects on the performance of typical photovoltaic materials were analyzed. The maximum mismatch factor for typical photovoltaic materials under local reference spectra can reach up to 21 %. The comparisons with standard spectrum highlighted that the superior capacity of local reference spectra to describe the configuration of regional solar energy. This study provides a novel insight into the fine description for regional solar spectra, which sets a new direction for innovation in photovoltaic technology and promotes the sustainable utilization of renewable energy.

Suggested Citation

  • Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017287
    DOI: 10.1016/j.renene.2023.119813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    2. Ramadhan, Raden A.A. & Heatubun, Yosca R.J. & Tan, Sek F. & Lee, Hyun-Jin, 2021. "Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power," Renewable Energy, Elsevier, vol. 178(C), pages 1006-1019.
    3. Conde, Luis A. & Angulo, José R. & Sevillano-Bendezú, Miguel Á. & Nofuentes, Gustavo & Töfflinger, Jan A. & de la Casa, Juan, 2021. "Spectral effects on the energy yield of various photovoltaic technologies in Lima (Peru)," Energy, Elsevier, vol. 223(C).
    4. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    5. Kinsey, Geoffrey S. & Riedel-Lyngskær, Nicholas C. & Miguel, Alonso-Abella & Boyd, Matthew & Braga, Marília & Shou, Chunhui & Cordero, Raul R. & Duck, Benjamin C. & Fell, Christopher J. & Feron, Sarah, 2022. "Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide," Renewable Energy, Elsevier, vol. 196(C), pages 995-1016.
    6. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    7. Zheng, Jiajia & Dang, Yongjie & Assad, Ullah, 2024. "Household energy consumption, energy efficiency, and household income–Evidence from China," Applied Energy, Elsevier, vol. 353(PA).
    8. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    9. Neves, Guilherme & Vilela, Waldeir & Pereira, Enio & Yamasoe, Marcia & Nofuentes, Gustavo, 2021. "Spectral impact on PV in low-latitude sites: The case of southeastern Brazil," Renewable Energy, Elsevier, vol. 164(C), pages 1306-1319.
    10. Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
    11. Choi, Kelvin, Tsz Hei & Brindley, Helen & Ekins-Daukes, N. & Escobar, Rodrigo, 2021. "Developing automated methods to estimate spectrally resolved direct normal irradiance for solar energy applications," Renewable Energy, Elsevier, vol. 173(C), pages 1070-1086.
    12. Zeitsch, Peter J., 2019. "A jump model for credit default swaps with hierarchical clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 737-775.
    13. Tso, William W. & Demirhan, C. Doga & Heuberger, Clara F. & Powell, Joseph B. & Pistikopoulos, Efstratios N., 2020. "A hierarchical clustering decomposition algorithm for optimizing renewable power systems with storage," Applied Energy, Elsevier, vol. 270(C).
    14. Duan, Qiuhua & Feng, Yanxiao & Wang, Julian, 2021. "Clustering of visible and infrared solar irradiance for solar architecture design and analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 668-677.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    2. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    3. Hookoom, Tavish & Bangarigadu, Kaviraj & Ramgolam, Yatindra Kumar, 2022. "Optimisation of geographically deployed PV parks for reduction of intermittency to enhance grid stability," Renewable Energy, Elsevier, vol. 187(C), pages 1020-1036.
    4. Lappalainen, Kari & Valkealahti, Seppo, 2022. "Sizing of energy storage systems for ramp rate control of photovoltaic strings," Renewable Energy, Elsevier, vol. 196(C), pages 1366-1375.
    5. Lappalainen, Kari & Valkealahti, Seppo, 2021. "Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings," Applied Energy, Elsevier, vol. 301(C).
    6. Kinsey, Geoffrey S. & Riedel-Lyngskær, Nicholas C. & Miguel, Alonso-Abella & Boyd, Matthew & Braga, Marília & Shou, Chunhui & Cordero, Raul R. & Duck, Benjamin C. & Fell, Christopher J. & Feron, Sarah, 2022. "Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide," Renewable Energy, Elsevier, vol. 196(C), pages 995-1016.
    7. Terrén-Serrano, G. & Martínez-Ramón, M., 2023. "Kernel learning for intra-hour solar forecasting with infrared sky images and cloud dynamic feature extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    9. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    10. Porfirio, Anthony Carlos Silva & De Souza, José Leonaldo & Lyra, Gustavo Bastos & Maringolo Lemes, Marco Antonio, 2012. "An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil," Energy, Elsevier, vol. 44(1), pages 584-592.
    11. Aitor Marzo & Jesús Ballestrín & Joaquín Alonso-Montesinos & Pablo Ferrada & Jesús Polo & Gabriel López & Javier Barbero, 2021. "Field Quality Control of Spectral Solar Irradiance Measurements by Comparison with Broadband Measurements," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    12. Marek Walacik & Aneta Chmielewska, 2024. "Energy Performance in Residential Buildings as a Property Market Efficiency Driver," Energies, MDPI, vol. 17(10), pages 1-18, May.
    13. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    15. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    16. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    18. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    19. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Lisdelys González-Rodríguez & Amauri Pereira de Oliveira & Lien Rodríguez-López & Jorge Rosas & David Contreras & Ana Carolina Baeza, 2021. "A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.