IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007451.html
   My bibliography  Save this article

Surface temperature and power generation efficiency of PV arrays with various row spacings: A full-scale outdoor experimental study

Author

Listed:
  • Huang, Lin
  • Song, Zihao
  • Dong, Qichang
  • Song, Ye
  • Zhao, Xiaoqing
  • Qi, Jiacheng
  • Shi, Long

Abstract

Quantifying the relationship between surface temperature and power generation efficiency of solar photovoltaics (PV) is critical to their practical implementation. Although empirical models have been developed on this, they were mainly based on indoor laboratory tests, ignoring a practically significant arrangement factor. Therefore, a combined outdoor experimental and empirical study on PV array systems considering various row spacings was undertaken through this study. Experimental results indicated that solar irradiance shows a relatively more prominent effect than row spacing and wind speed in outdoor environments. During the practical arrangement, it is only necessary to ensure that there is no shadow between the adjacent rows of PV arrays in practical applications, and the possible cooling effect brought by excessive row spacing may not be pursued. However, this does not mean that row spacing can be ignored when predicting surface temperature and power generation efficiency. Based on the data from our long-term experimental tests, empirical models to predict solar PV's surface temperature and power generation efficiency were developed, considering various row spacings. Comparison showed that the models developed in this study can reduce the mean relative error of the previous model's predictions from 20% to 5%, which proves the necessity of including row spacing in the models. This study's developed models and research outcomes pave the way for future large-scale practical analysis of solar PV arrays.

Suggested Citation

  • Huang, Lin & Song, Zihao & Dong, Qichang & Song, Ye & Zhao, Xiaoqing & Qi, Jiacheng & Shi, Long, 2024. "Surface temperature and power generation efficiency of PV arrays with various row spacings: A full-scale outdoor experimental study," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007451
    DOI: 10.1016/j.apenergy.2024.123362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Copper, J.K. & Sproul, A.B. & Bruce, A.G., 2016. "A method to calculate array spacing and potential system size of photovoltaic arrays in the urban environment using vector analysis," Applied Energy, Elsevier, vol. 161(C), pages 11-23.
    2. Stanislawski, B. & Margairaz, F. & Cal, R.B. & Calaf, M., 2020. "Potential of module arrangements to enhance convective cooling in solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 157(C), pages 851-858.
    3. Ma, Yi & Li, Guihua & Tang, Runsheng, 2011. "Optical performance of vertical axis three azimuth angles tracked solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1784-1791, May.
    4. Sonia Jerez & Isabelle Tobin & Robert Vautard & Juan Pedro Montávez & Jose María López-Romero & Françoise Thais & Blanka Bartok & Ole Bøssing Christensen & Augustin Colette & Michel Déqué & Grigory Ni, 2015. "The impact of climate change on photovoltaic power generation in Europe," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    5. Xue, Liya & Liu, Junling & Lin, Xiaojing & Li, Mengyue & Kobashi, Takuro, 2024. "Assessing urban rooftop PV economics for regional deployment by integrating local socioeconomic, technological, and policy conditions," Applied Energy, Elsevier, vol. 353(PA).
    6. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    7. Williams, Henry J. & Hashad, Khaled & Wang, Haomiao & Max Zhang, K., 2023. "The potential for agrivoltaics to enhance solar farm cooling," Applied Energy, Elsevier, vol. 332(C).
    8. Mavromatakis, F. & Makrides, G. & Georghiou, G. & Pothrakis, A. & Franghiadakis, Y. & Drakakis, E. & Koudoumas, E., 2010. "Modeling the photovoltaic potential of a site," Renewable Energy, Elsevier, vol. 35(7), pages 1387-1390.
    9. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    10. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    11. Glick, Andrew & Ali, Naseem & Bossuyt, Juliaan & Recktenwald, Gerald & Calaf, Marc & Cal, Raúl Bayoán, 2020. "Infinite photovoltaic solar arrays: Considering flux of momentum and heat transfer," Renewable Energy, Elsevier, vol. 156(C), pages 791-803.
    12. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2011. "Optical performance of vertical single-axis tracked solar panels," Renewable Energy, Elsevier, vol. 36(1), pages 64-68.
    13. Hartner, Michael & Ortner, André & Hiesl, Albert & Haas, Reinhard, 2015. "East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective," Applied Energy, Elsevier, vol. 160(C), pages 94-107.
    14. Gaglia, Athina G. & Lykoudis, Spyros & Argiriou, Athanassios A. & Balaras, Constantinos A. & Dialynas, Evangelos, 2017. "Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece," Renewable Energy, Elsevier, vol. 101(C), pages 236-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    2. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    3. Tang, Feng & Li, Guihua & Tang, Runsheng, 2016. "Design and optical performance of CPC based compound plane concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 140-151.
    4. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    5. Sungha Yoon & Jintae Park & Chaeyoung Lee & Sangkwon Kim & Yongho Choi & Soobin Kwak & Hyundong Kim & Junseok Kim, 2023. "Optimal Orientation of Solar Panels for Multi-Apartment Buildings," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    6. Ha, Subin & Zhou, Zixuan & Im, Eun-Soon & Lee, Young-Mi, 2023. "Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles," Renewable Energy, Elsevier, vol. 206(C), pages 324-335.
    7. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    8. Cătălin Alexandru, 2021. "Optimization of the Bi-Axial Tracking System for a Photovoltaic Platform," Energies, MDPI, vol. 14(3), pages 1-30, January.
    9. Ibrahim, Nur Atirah & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Mustaffa, Azizul Azri & Kidam, Kamarizan, 2024. "Climate change impact on solar system in Malaysia: Techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Boccalatte, Alessia & Thebault, Martin & Paolini, Riccardo & Fossa, Marco & Ramousse, Julien & Ménézo, Christophe & Santamouris, Mattheos, 2023. "Assessing the combined effects of local climate and mounting configuration on the electrical and thermal performance of photovoltaic systems. Application to the greater Sydney area," Renewable Energy, Elsevier, vol. 219(P1).
    11. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    12. Yu, Yamei & Liu, Nianyong & Tang, Runsheng, 2014. "Optical performance of CPCs for concentrating solar radiation on flat receivers with a restricted incidence angle," Renewable Energy, Elsevier, vol. 62(C), pages 679-688.
    13. Zhang, Heng & Chen, Haiping & Han, Yuchen & Liu, Haowen & Li, Mingjie, 2017. "Experimental and simulation studies on a novel compound parabolic concentrator," Renewable Energy, Elsevier, vol. 113(C), pages 784-794.
    14. Yilmaz, Saban & Riza Ozcalik, Hasan & Dogmus, Osman & Dincer, Furkan & Akgol, Oguzhan & Karaaslan, Muharrem, 2015. "Design of two axes sun tracking controller with analytically solar radiation calculations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 997-1005.
    15. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    16. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    17. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Gangatharan, Sivasankar, 2024. "An experimental investigation on coalescing the potentiality of PCM, fins and water to achieve sturdy cooling effect on PV panels," Applied Energy, Elsevier, vol. 356(C).
    18. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    19. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.