IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1306-1319.html
   My bibliography  Save this article

Spectral impact on PV in low-latitude sites: The case of southeastern Brazil

Author

Listed:
  • Neves, Guilherme
  • Vilela, Waldeir
  • Pereira, Enio
  • Yamasoe, Marcia
  • Nofuentes, Gustavo

Abstract

The spectral impact on various PV materials –amorphous silicon (a-Si), CdTe, CIGS, single crystalline silicon (sc-Si) and multi crystalline (mc-Si)– in two nearby cities of Southeastern Brazil is presented. For every PV technology studied, the values of the spectral mismatch factor on instantaneous, monthly and annual basis were computed by means of spectra recorded over a 12-month experimental campaign carried out in São Paulo and São José dos Campos. A blue-biased however seasonal spectrum prevails in both cities, which leads to annual spectral gains of up to around 6% and 2% exhibited by a-Si and CdTe, respectively. On the other hand, CIGS, sc-Si and mc-Si show negligible annual gains that lie between around −1% and 0%. These results are well aligned with previous findings obtained using both experimental and modelled spectra in other low-latitude sites with tropical climate. Consequently, spectral effects cannot be ignored in such sites, especially when modelling the outdoor behavior of larger bandgap PV devices. Last, a quasi-linear relationship exists between the monthly average photon energy and the monthly spectral mismatch factor for all the PV materials under scrutiny. This conclusion is in good agreement with previous works carried out in mid-latitude sites.

Suggested Citation

  • Neves, Guilherme & Vilela, Waldeir & Pereira, Enio & Yamasoe, Marcia & Nofuentes, Gustavo, 2021. "Spectral impact on PV in low-latitude sites: The case of southeastern Brazil," Renewable Energy, Elsevier, vol. 164(C), pages 1306-1319.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1306-1319
    DOI: 10.1016/j.renene.2020.10.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    2. Chantana, Jakapan & Imai, Yurie & Kawano, Yu & Hishikawa, Yoshihiro & Nishioka, Kensuke & Minemoto, Takashi, 2020. "Impact of average photon energy on spectral gain and loss of various-type PV technologies at different locations," Renewable Energy, Elsevier, vol. 145(C), pages 1317-1324.
    3. Ana Maria Gracia Amillo & Thomas Huld & Paraskevi Vourlioti & Richard Müller & Matthew Norton, 2015. "Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies," Energies, MDPI, vol. 8(5), pages 1-34, April.
    4. Eduardo Landulfo & Fabio Lopes & Eduardo Landulfo & Ericka Mariano & Maria Paulete Martins, 2012. "Impacts of Biomass Burning in the Atmosphere of the Southeastern Region of Brazil Using Remote Sensing Systems," Chapters, in: Hayder Abdul-Razzak (ed.), Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics, IntechOpen.
    5. Alonso-Abella, M. & Chenlo, F. & Nofuentes, G. & Torres-Ramírez, M., 2014. "Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites," Energy, Elsevier, vol. 67(C), pages 435-443.
    6. García, R. & Torres-Ramírez, M. & Muñoz-Cerón, E. & de la Casa, J. & Aguilera, J., 2017. "Spectral characterization of the solar resource of a sunny inland site for flat plate and concentrating PV systems," Renewable Energy, Elsevier, vol. 101(C), pages 1169-1179.
    7. Nofuentes, G. & García-Domingo, B. & Muñoz, J.V. & Chenlo, F., 2014. "Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution," Applied Energy, Elsevier, vol. 113(C), pages 302-309.
    8. Chantana, Jakapan & Kamei, Aika & Minemoto, Takashi, 2017. "Influences of environmental factors on Si-based photovoltaic modules after longtime outdoor exposure by multiple regression analysis," Renewable Energy, Elsevier, vol. 101(C), pages 10-15.
    9. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    10. Piacentini, Rubén D. & Salum, Graciela M. & Fraidenraich, Naum & Tiba, Chigueru, 2011. "Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 409-412.
    11. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquim Romaní & Alba Ramos & Jaume Salom, 2022. "Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations," Energies, MDPI, vol. 15(9), pages 1-30, April.
    2. Kinsey, Geoffrey S. & Riedel-Lyngskær, Nicholas C. & Miguel, Alonso-Abella & Boyd, Matthew & Braga, Marília & Shou, Chunhui & Cordero, Raul R. & Duck, Benjamin C. & Fell, Christopher J. & Feron, Sarah, 2022. "Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide," Renewable Energy, Elsevier, vol. 196(C), pages 995-1016.
    3. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    2. Neves, Luciano A. & Leite, Gabriel C. & MacKenzie, Roderick C.I. & Ferreira, Rafael A.M. & Porto, Matheus P., 2021. "A methodology to simulate solar cells electrical response using optical-electrical mathematical models and real solar spectra," Renewable Energy, Elsevier, vol. 164(C), pages 968-977.
    3. Conde, Luis A. & Angulo, José R. & Sevillano-Bendezú, Miguel Á. & Nofuentes, Gustavo & Töfflinger, Jan A. & de la Casa, Juan, 2021. "Spectral effects on the energy yield of various photovoltaic technologies in Lima (Peru)," Energy, Elsevier, vol. 223(C).
    4. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    5. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    6. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    7. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2022. "Dependence of spectral factor on angle of incidence for monocrystalline silicon based photovoltaic solar panel," Renewable Energy, Elsevier, vol. 184(C), pages 820-829.
    8. Kinsey, Geoffrey S. & Riedel-Lyngskær, Nicholas C. & Miguel, Alonso-Abella & Boyd, Matthew & Braga, Marília & Shou, Chunhui & Cordero, Raul R. & Duck, Benjamin C. & Fell, Christopher J. & Feron, Sarah, 2022. "Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide," Renewable Energy, Elsevier, vol. 196(C), pages 995-1016.
    9. Dimitra Kouklaki & Stelios Kazadzis & Ioannis-Panagiotis Raptis & Kyriakoula Papachristopoulou & Ilias Fountoulakis & Kostas Eleftheratos, 2023. "Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions," Energies, MDPI, vol. 16(18), pages 1-18, September.
    10. Wang, Shuhao & Peng, Jinqing & Wang, Meng & Xue, Peng & Luo, Yimo & Ma, Tao & Zhao, Yifan, 2023. "Evaluation of the energy conversion performance of different photovoltaic materials with measured solar spectral irradiance," Renewable Energy, Elsevier, vol. 219(P1).
    11. Hassan Gholami & Harald Nils Røstvik, 2021. "The Effect of Climate on the Solar Radiation Components on Building Skins and Building Integrated Photovoltaics (BIPV) Materials," Energies, MDPI, vol. 14(7), pages 1-15, March.
    12. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    13. Torres-Ramírez, M. & Nofuentes, G. & Silva, J.P. & Silvestre, S. & Muñoz, J.V., 2014. "Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates," Energy, Elsevier, vol. 73(C), pages 731-740.
    14. Daxini, Rajiv & Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2022. "Direct spectral distribution characterisation using the Average Photon Energy for improved photovoltaic performance modelling," Renewable Energy, Elsevier, vol. 201(P1), pages 1176-1188.
    15. Thomas Huld & Ana M. Gracia Amillo, 2015. "Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum," Energies, MDPI, vol. 8(6), pages 1-23, June.
    16. Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.
    17. Fernández, Eduardo F. & Almonacid, Florencia & Soria-Moya, Alberto & Terrados, Julio, 2015. "Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions," Energy, Elsevier, vol. 90(P2), pages 1878-1886.
    18. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    19. Ana Maria Gracia Amillo & Thomas Huld & Paraskevi Vourlioti & Richard Müller & Matthew Norton, 2015. "Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies," Energies, MDPI, vol. 8(5), pages 1-34, April.
    20. Herman-Czezuch, Anna & Mekeng, Armelle Zemo & Meilinger, Stefanie & Barry, James & Kimiaie, Nicola, 2022. "Impact of aerosols on photovoltaic energy production using a spectrally resolved model chain: Case study of southern West Africa," Renewable Energy, Elsevier, vol. 194(C), pages 321-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1306-1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.