IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223023137.html
   My bibliography  Save this article

An ensemble learning framework for rooftop photovoltaic project site selection

Author

Listed:
  • Hou, Yali
  • Wang, Qunwei
  • Tan, Tao

Abstract

The selection of suitable locations for rooftop photovoltaic projects (RPVP) is critical for optimizing power generation efficiency and return on investment. However, traditional methods of site selection that rely on subjective assessments of index weights can compromise accuracy, while complex calculations may limit adaptability to changing real-world data. In this study, we proposed a data-driven ensemble learning framework that integrates socio-economic, environmental, climate, and geography factors to optimize RPVP site selection. Using data from 1589 counties in China, we mapped eight criteria to feature variables to facilitate machine learning classification. Furthermore, the K-means algorithm was employed to enhance the model's robustness against outliers. The findings indicate that the proposed stacking model exhibits superior performance in comparison to other classifiers, as evidenced by the higher scores of performance metrics. Specifically, for positive instance prediction, the stacking model achieves the highest Precision scores. According to the rankings of Precision scores derived from the four ensembled models, we categorized counties suitable for RPVP development into five priority tiers. The ensemble learning framework provides a valuable and reusable tool for advancing county-level RPVP site selection and serves as a motivation for selecting other renewable power plant sites.

Suggested Citation

  • Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223023137
    DOI: 10.1016/j.energy.2023.128919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    2. Rediske, Graciele & Siluk, Julio Cezar M. & Michels, Leandro & Rigo, Paula D. & Rosa, Carmen B. & Cugler, Gilberto, 2020. "Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil," Energy, Elsevier, vol. 197(C).
    3. Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
    4. Chia-Nan Wang & Van Thanh Nguyen & Hoang Tuyet Nhi Thai & Duy Hung Duong, 2018. "Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam," Energies, MDPI, vol. 11(6), pages 1-27, June.
    5. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    6. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    7. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    8. Yu, Shiwei & Han, Ruilian & Zhang, Junjie, 2023. "Reassessment of the potential for centralized and distributed photovoltaic power generation in China: On a prefecture-level city scale," Energy, Elsevier, vol. 262(PA).
    9. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    10. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    11. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    12. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    13. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    14. Chen, Zhenling & Li, Jinkai & Zhao, Weigang & Yuan, Xiao-Chen & Yang, Guo-liang, 2019. "Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China," Energy Policy, Elsevier, vol. 125(C), pages 122-134.
    15. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Wenqiang & Liang, Yunze & Lei, Ming & Cai, Dongliang & Wu, Xinwei, 2024. "A stochastic catastrophe model of construction site safety hazards supervision and its resilience," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    2. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    3. López-Bravo, Celia & Mora-López, Llanos & Sidrach-deCardona, Mariano & Márquez-Ballesteros, María José, 2024. "A comprehensive analysis based on GIS-AHP to minimise the social and environmental impact of the installation of large-scale photovoltaic plants in south Spain," Renewable Energy, Elsevier, vol. 226(C).
    4. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2023. "A novel four-stage integrated GIS based fuzzy SWARA approach for solar site suitability with hydrogen storage system," Energy, Elsevier, vol. 278(PA).
    5. José Eduardo Tafula & Constantino Dário Justo & Pedro Moura & Jérôme Mendes & Ana Soares, 2023. "Multicriteria Decision-Making Approach for Optimum Site Selection for Off-Grid Solar Photovoltaic Microgrids in Mozambique," Energies, MDPI, vol. 16(6), pages 1-41, March.
    6. Jalil Heidary Dahooie & Ali Husseinzadeh Kashan & Zahra Shoaei Naeini & Amir Salar Vanaki & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2022. "A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran," Energies, MDPI, vol. 15(8), pages 1-20, April.
    7. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    8. Kocabaldır, Canan & Yücel, Mehmet Ali, 2023. "GIS-based multicriteria decision analysis for spatial planning of solar photovoltaic power plants in Çanakkale province, Turkey," Renewable Energy, Elsevier, vol. 212(C), pages 455-467.
    9. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    10. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    11. Ayough, Ashkan & Boshruei, Setareh & Khorshidvand, Behrooz, 2022. "A new interactive method based on multi-criteria preference degree functions for solar power plant site selection," Renewable Energy, Elsevier, vol. 195(C), pages 1165-1173.
    12. Sofia Spyridonidou & Eva Loukogeorgaki & Dimitra G. Vagiona & Teresa Bertrand, 2022. "Towards a Sustainable Spatial Planning Approach for PV Site Selection in Portugal," Energies, MDPI, vol. 15(22), pages 1-22, November.
    13. Jiang, Wei & Zhang, Shuo & Wang, Teng & Zhang, Yufei & Sha, Aimin & Xiao, Jingjing & Yuan, Dongdong, 2024. "Evaluation method for the availability of solar energy resources in road areas before route corridor planning," Applied Energy, Elsevier, vol. 356(C).
    14. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    15. Rahim Moltames & Mohammad Sajad Naghavi & Mahyar Silakhori & Younes Noorollahi & Hossein Yousefi & Mostafa Hajiaghaei-Keshteli & Behzad Azizimehr, 2022. "Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    16. Virginia Thomasi & Julio Cezar Mairesse Siluk & Paula Donaduzzi Rigo & Carmen Brum Rosa & Enoque Dutra Garcia & Ricardo Augusto Cassel & Carlos Fernando da Silva Ramos, 2022. "A Model for Measuring the Photovoltaic Project Performance in Energy Auctions," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 501-511, July.
    17. Günen, Mehmet Akif, 2021. "A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey," Renewable Energy, Elsevier, vol. 178(C), pages 212-225.
    18. Jing, Rui & Liu, Jiahui & Zhang, Haoran & Zhong, Fenglin & Liu, Yupeng & Lin, Jianyi, 2022. "Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus," Energy, Elsevier, vol. 256(C).
    19. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    20. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223023137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.