IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp995-1016.html
   My bibliography  Save this article

Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide

Author

Listed:
  • Kinsey, Geoffrey S.
  • Riedel-Lyngskær, Nicholas C.
  • Miguel, Alonso-Abella
  • Boyd, Matthew
  • Braga, Marília
  • Shou, Chunhui
  • Cordero, Raul R.
  • Duck, Benjamin C.
  • Fell, Christopher J.
  • Feron, Sarah
  • Georghiou, George E.
  • Habryl, Nicholas
  • John, Jim J.
  • Ketjoy, Nipon
  • López, Gabriel
  • Louwen, Atse
  • Maweza, Elijah Loyiso
  • Minemoto, Takashi
  • Mittal, Ankit
  • Molto, Cécile
  • Neves, Guilherme
  • Garrido, Gustavo Nofuentes
  • Norton, Matthew
  • Paudyal, Basant R.
  • Pereira, Enio Bueno
  • Poissant, Yves
  • Pratt, Lawrence
  • Shen, Qu
  • Reindl, Thomas
  • Rennhofer, Marcus
  • Rodríguez-Gallegos, Carlos D.
  • Rüther, Ricardo
  • van Sark, Wilfried
  • Sevillano-Bendezú, Miguel A.
  • Seigneur, Hubert
  • Tejero, Jorge A.
  • Theristis, Marios
  • Töfflinger, Jan A.
  • Ulbrich, Carolin
  • Vilela, Waldeir Amaral
  • Xia, Xiangao
  • Yamasoe, Márcia A.

Abstract

In photovoltaic power ratings, a single solar spectrum, AM1.5, is the de facto standard for record laboratory efficiencies, commercial module specifications, and performance ratios of solar power plants. More detailed energy analysis that accounts for local spectral irradiance, along with temperature and broadband irradiance, reduces forecast errors to expand the grid utility of solar energy. Here, ground-level measurements of spectral irradiance collected worldwide have been pooled to provide a sampling of geographic, seasonal, and diurnal variation. Applied to nine solar cell types, the resulting divergence in solar cell efficiencies illustrates that a single spectrum is insufficient for comparisons of cells with different spectral responses. Cells with two or more junctions tend to have efficiencies below that under the standard spectrum. Silicon exhibits the least spectral sensitivity: relative weekly site variation ranges from 1% in Lima, Peru to 14% in Edmonton, Canada.

Suggested Citation

  • Kinsey, Geoffrey S. & Riedel-Lyngskær, Nicholas C. & Miguel, Alonso-Abella & Boyd, Matthew & Braga, Marília & Shou, Chunhui & Cordero, Raul R. & Duck, Benjamin C. & Fell, Christopher J. & Feron, Sarah, 2022. "Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide," Renewable Energy, Elsevier, vol. 196(C), pages 995-1016.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:995-1016
    DOI: 10.1016/j.renene.2022.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joanna D. Haigh & Ann R. Winning & Ralf Toumi & Jerald W. Harder, 2010. "An influence of solar spectral variations on radiative forcing of climate," Nature, Nature, vol. 467(7316), pages 696-699, October.
    2. Ana Maria Gracia Amillo & Thomas Huld & Paraskevi Vourlioti & Richard Müller & Matthew Norton, 2015. "Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies," Energies, MDPI, vol. 8(5), pages 1-34, April.
    3. Conde, Luis A. & Angulo, José R. & Sevillano-Bendezú, Miguel Á. & Nofuentes, Gustavo & Töfflinger, Jan A. & de la Casa, Juan, 2021. "Spectral effects on the energy yield of various photovoltaic technologies in Lima (Peru)," Energy, Elsevier, vol. 223(C).
    4. Alonso-Abella, M. & Chenlo, F. & Nofuentes, G. & Torres-Ramírez, M., 2014. "Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites," Energy, Elsevier, vol. 67(C), pages 435-443.
    5. Nofuentes, G. & García-Domingo, B. & Muñoz, J.V. & Chenlo, F., 2014. "Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution," Applied Energy, Elsevier, vol. 113(C), pages 302-309.
    6. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    7. Neves, Guilherme & Vilela, Waldeir & Pereira, Enio & Yamasoe, Marcia & Nofuentes, Gustavo, 2021. "Spectral impact on PV in low-latitude sites: The case of southeastern Brazil," Renewable Energy, Elsevier, vol. 164(C), pages 1306-1319.
    8. Thomas Huld & Ana M. Gracia Amillo, 2015. "Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum," Energies, MDPI, vol. 8(6), pages 1-23, June.
    9. Sirisamphanwong, Chattariya & Ketjoy, Nipon, 2012. "Impact of spectral irradiance distribution on the outdoor performance of photovoltaic system under Thai climatic conditions," Renewable Energy, Elsevier, vol. 38(1), pages 69-74.
    10. Sebastian Sterl & Inne Vanderkelen & Celray James Chawanda & Daniel Russo & Robert J. Brecha & Ann Griensven & Nicole P. M. Lipzig & Wim Thiery, 2020. "Smart renewable electricity portfolios in West Africa," Nature Sustainability, Nature, vol. 3(9), pages 710-719, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
    2. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    2. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    3. Neves, Guilherme & Vilela, Waldeir & Pereira, Enio & Yamasoe, Marcia & Nofuentes, Gustavo, 2021. "Spectral impact on PV in low-latitude sites: The case of southeastern Brazil," Renewable Energy, Elsevier, vol. 164(C), pages 1306-1319.
    4. Evaldo C. Gouvêa & Pedro M. Sobrinho & Teófilo M. Souza, 2017. "Spectral Response of Polycrystalline Silicon Photovoltaic Cells under Real-Use Conditions," Energies, MDPI, vol. 10(8), pages 1-13, August.
    5. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    6. Paudyal, Basant Raj & Somasundaram, Sakthi Guhan & Louwen, Atse & Reinders, Angele H.M.E. & van Sark, Wilfried G.J.H.M. & Stellbogen, Dirk & Ulbrich, Carolin & Imenes, Anne Gerd, 2024. "Analysis of spectral irradiance variation in northern Europe using average photon energy distributions," Renewable Energy, Elsevier, vol. 224(C).
    7. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    8. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    9. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    10. Torres-Ramírez, M. & Nofuentes, G. & Silva, J.P. & Silvestre, S. & Muñoz, J.V., 2014. "Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates," Energy, Elsevier, vol. 73(C), pages 731-740.
    11. Thomas Huld & Ana M. Gracia Amillo, 2015. "Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum," Energies, MDPI, vol. 8(6), pages 1-23, June.
    12. Fernández, Eduardo F. & Almonacid, Florencia & Soria-Moya, Alberto & Terrados, Julio, 2015. "Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions," Energy, Elsevier, vol. 90(P2), pages 1878-1886.
    13. Conde, Luis A. & Angulo, José R. & Sevillano-Bendezú, Miguel Á. & Nofuentes, Gustavo & Töfflinger, Jan A. & de la Casa, Juan, 2021. "Spectral effects on the energy yield of various photovoltaic technologies in Lima (Peru)," Energy, Elsevier, vol. 223(C).
    14. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    15. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
    16. Ana Maria Gracia Amillo & Thomas Huld & Paraskevi Vourlioti & Richard Müller & Matthew Norton, 2015. "Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies," Energies, MDPI, vol. 8(5), pages 1-34, April.
    17. Herman-Czezuch, Anna & Mekeng, Armelle Zemo & Meilinger, Stefanie & Barry, James & Kimiaie, Nicola, 2022. "Impact of aerosols on photovoltaic energy production using a spectrally resolved model chain: Case study of southern West Africa," Renewable Energy, Elsevier, vol. 194(C), pages 321-333.
    18. Daxini, Rajiv & Wilson, Robin & Wu, Yupeng, 2023. "Modelling the spectral influence on photovoltaic device performance using the average photon energy and the depth of a water absorption band for improved forecasting," Energy, Elsevier, vol. 284(C).
    19. Dimitra Kouklaki & Stelios Kazadzis & Ioannis-Panagiotis Raptis & Kyriakoula Papachristopoulou & Ilias Fountoulakis & Kostas Eleftheratos, 2023. "Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions," Energies, MDPI, vol. 16(18), pages 1-18, September.
    20. Chong, Kok-Keong & Khlyabich, Petr P. & Hong, Kai-Jeat & Reyes-Martinez, Marcos & Rand, Barry P. & Loo, Yueh-Lin, 2016. "Comprehensive method for analyzing the power conversion efficiency of organic solar cells under different spectral irradiances considering both photonic and electrical characteristics," Applied Energy, Elsevier, vol. 180(C), pages 516-523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:995-1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.