IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018494.html
   My bibliography  Save this article

99.6% efficiency DC-DC coupling for green hydrogen production using PEM electrolyzer, photovoltaic generation and battery storage operating in an off-grid area

Author

Listed:
  • Sánchez-Squella, Antonio
  • Flores, Ricardo
  • Burgos, Rolando
  • Morales, Felipe
  • Nader, Andrés
  • Valdivia-Lefort, Patricio

Abstract

This paper presents a novel connection and control strategy for a hydrogen generation system using a proton exchange membrane electrolyzer powered by solar energy in an off-grid area without network backup. Given that, the proposed architecture is based on the indirect control of the Photovoltaic plant (achieved by removing a power-converter), the presented solution is more efficient and more reliable than the traditional scheme. Furthermore, with this innovation one can reach the same hydrogen production with smaller electrolyzers. The methodology includes detailed models of the photovoltaic panel and the electrolyzer, along with a control strategy that considers the degradation mechanisms of the electrolyzer to ensure reliable and prolonged operation. The results show that the proposed strategy keeps the operating power of the electrolyzer constant, even under variations in irradiance, thanks to energy storage in batteries. It is demonstrated that the proposed system offers efficiency above 99.6% during the analyzed period, with a 100% utilization rate of the electrolyzer, avoiding periods of inactivity and high current peaks. The study also includes simulations and experimental tests that confirm the feasibility and effectiveness of the presented solution, highlighting its advantages in terms of efficiency and investment costs compared to direct connections and other existing methods.

Suggested Citation

  • Sánchez-Squella, Antonio & Flores, Ricardo & Burgos, Rolando & Morales, Felipe & Nader, Andrés & Valdivia-Lefort, Patricio, 2024. "99.6% efficiency DC-DC coupling for green hydrogen production using PEM electrolyzer, photovoltaic generation and battery storage operating in an off-grid area," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018494
    DOI: 10.1016/j.renene.2024.121781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    2. Mathews, John, 2007. "Seven steps to curb global warming," Energy Policy, Elsevier, vol. 35(8), pages 4247-4259, August.
    3. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    4. Ahmed, Jubaer & Salam, Zainal, 2015. "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, Elsevier, vol. 150(C), pages 97-108.
    5. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    6. Liu, Xianyang & Zou, Jun & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system," Renewable Energy, Elsevier, vol. 216(C).
    7. Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
    8. Nicolás Müller & Samir Kouro & Pericle Zanchetta & Patrick Wheeler & Gustavo Bittner & Francesco Girardi, 2019. "Energy Storage Sizing Strategy for Grid-Tied PV Plants under Power Clipping Limitations," Energies, MDPI, vol. 12(9), pages 1-17, May.
    9. Isherwood, William & Smith, J.Ray & Aceves, Salvador M & Berry, Gene & Clark, Woodrow & Johnson, Ronald & Das, Deben & Goering, Douglas & Seifert, Richard, 2000. "Remote power systems with advanced storage technologies for Alaskan villages," Energy, Elsevier, vol. 25(10), pages 1005-1020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guanxin & Wu, Yan & Tang, Shuo & Wang, Yufei & Yu, Xinhai & Ma, Mingyan, 2024. "Optimal design of hydrogen production processing coupling alkaline and proton exchange membrane electrolyzers," Energy, Elsevier, vol. 302(C).
    2. Wang, Xiongzheng & Meng, Xin & Nie, Gongzhe & Li, Binghui & Yang, Haoran & He, Mingzhi, 2024. "Optimization of hydrogen production in multi-Electrolyzer systems: A novel control strategy for enhanced renewable energy utilization and Electrolyzer lifespan," Applied Energy, Elsevier, vol. 376(PB).
    3. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    5. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    6. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    7. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    8. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    9. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    10. Stede, Jan & Pauliuk, Stefan & Hardadi, Gilang & Neuhoff, Karsten, 2021. "Carbon pricing of basic materials: Incentives and risks for the value chain and consumers," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 189.
    11. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    12. Abbes Kihal & Fateh Krim & Billel Talbi & Abdelbaset Laib & Abdeslem Sahli, 2018. "A Robust Control of Two-Stage Grid-Tied PV Systems Employing Integral Sliding Mode Theory," Energies, MDPI, vol. 11(10), pages 1-21, October.
    13. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    14. Josefine A. Olsson & Sabbie A. Miller & Mark G. Alexander, 2023. "Near-term pathways for decarbonizing global concrete production," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    16. Clark II, Woodrow W. & Isherwood, William, 2010. "Inner Mongolia must "leapfrog" the energy mistakes of the western developed nations," Utilities Policy, Elsevier, vol. 18(1), pages 29-45, March.
    17. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    18. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    19. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    20. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.