IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v185y2023ics1364032123004562.html
   My bibliography  Save this article

Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting

Author

Listed:
  • Yao, Ganzhou
  • Luo, Zirong
  • Lu, Zhongyue
  • Wang, Mangkuan
  • Shang, Jianzhong
  • Guerrerob, Josep M.

Abstract

This comprehensive review systematically investigates diverse Maximum Power Point Tracking (MPPT) control strategies in Point Absorber Wave Energy Conversion (PA-WEC) systems. It elucidates each technique's key characteristics, advantages, and limitations, along with their scope and principle, providing a crucial roadmap for future research in renewable and sustainable energy. A highlight is the proposition of an innovative hybrid MPPT method combining a wide-range input LLC resonant converter with an Advanced Particle Swarm Optimization (APSO) strategy, optimizing energy extraction under various wave conditions. The review evaluates existing MPPT techniques for PA-WEC systems, dissecting their efficiency, tracking speed, cost, complexity, and robustness. By utilizing the Improved Analytic Hierarchy Process (IAHP) entropy weighting method, the study facilitates a detailed analysis of performance metrics, recent advancements, and eighteen diverse MPPT strategies. Multi-index case study outcomes from the IAHP entropy weight method, supplemented with MATLAB simulations, vouch for the impressive comprehensive performance of the proposed hybrid MPPT method. By employing a mix of qualitative and quantitative methodologies for a rigorous analysis of the algorithmic principles integral to wave energy MPPT and an examination of their practical adaptability. In essence, this review serves as a valuable compass for industry professionals, policymakers, and researchers aiming to advance the field of wave energy conversion. It emphasizes the potential of pioneering MPPT control strategies to enhance the efficiency of PA-WEC systems, thereby providing a solid foundation for the pursuit of sustainable energy solutions.

Suggested Citation

  • Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004562
    DOI: 10.1016/j.rser.2023.113599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    2. Bigdeli, Nooshin, 2015. "Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 377-393.
    3. Saket, A. & Etemad-Shahidi, A., 2012. "Wave energy potential along the northern coasts of the Gulf of Oman, Iran," Renewable Energy, Elsevier, vol. 40(1), pages 90-97.
    4. Dong, Feng & Pan, Shangzhi & Gong, Jinwu & Cai, Yuanqi, 2023. "Maximum power point tracking control strategy based on frequency and amplitude control for the wave energy conversion system," Renewable Energy, Elsevier, vol. 215(C).
    5. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    6. Murai, Motohiko & Li, Qiao & Funada, Junki, 2021. "Study on power generation of single Point Absorber Wave Energy Converters (PA-WECs) and arrays of PA-WECs," Renewable Energy, Elsevier, vol. 164(C), pages 1121-1132.
    7. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    8. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    9. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    10. Harrag, Abdelghani & Messalti, Sabir, 2015. "Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1247-1260.
    11. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    12. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    13. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Gao, Yuping & Shao, Shuangquan & Zou, Huiming & Tang, Mingsheng & Xu, Hongbo & Tian, Changqing, 2016. "A fully floating system for a wave energy converter with direct-driven linear generator," Energy, Elsevier, vol. 95(C), pages 99-109.
    15. Hu, Lu & Xue, Fei & Qin, Zijian & Shi, Jiying & Qiao, Wen & Yang, Wenjing & Yang, Ting, 2019. "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system," Applied Energy, Elsevier, vol. 248(C), pages 567-575.
    16. Yilmaz, Unal & Kircay, Ali & Borekci, Selim, 2018. "PV system fuzzy logic MPPT method and PI control as a charge controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 994-1001.
    17. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    18. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    19. Agamloh, Emmanuel B. & Wallace, Alan K. & von Jouanne, Annette, 2008. "A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system," Renewable Energy, Elsevier, vol. 33(3), pages 520-529.
    20. Boumaaraf, Houria & Talha, Abdelaziz & Bouhali, Omar, 2015. "A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1171-1179.
    21. Reza Reisi, Ali & Hassan Moradi, Mohammad & Jamasb, Shahriar, 2013. "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 433-443.
    22. Punitha, K. & Devaraj, D. & Sakthivel, S., 2013. "Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 62(C), pages 330-340.
    23. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    24. Ahmed, Jubaer & Salam, Zainal, 2015. "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, Elsevier, vol. 150(C), pages 97-108.
    25. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    26. Houssamo, Issam & Locment, Fabrice & Sechilariu, Manuela, 2010. "Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms," Renewable Energy, Elsevier, vol. 35(10), pages 2381-2387.
    27. Li, Yang & Huang, Lei & Chen, Minshuo & Tan, Peiwen & Hu, Minqiang, 2023. "Maximum power point tracking control based on inertia force for underwater direct-drive wave energy converter," Renewable Energy, Elsevier, vol. 215(C).
    28. Lin, Yonggang & Bao, Jingwei & Liu, Hongwei & Li, Wei & Tu, Le & Zhang, Dahai, 2015. "Review of hydraulic transmission technologies for wave power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 194-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    2. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    3. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    4. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    5. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    6. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    7. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    8. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    9. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    12. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    13. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    14. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    15. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    16. Mao, Mingxuan & Zhang, Li & Duan, Pan & Duan, Qichang & Yang, Ming, 2018. "Grid-connected modular PV-Converter system with shuffled frog leaping algorithm based DMPPT controller," Energy, Elsevier, vol. 143(C), pages 181-190.
    17. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    18. John Macaulay & Zhongfu Zhou, 2018. "A Fuzzy Logical-Based Variable Step Size P&O MPPT Algorithm for Photovoltaic System," Energies, MDPI, vol. 11(6), pages 1-15, May.
    19. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    20. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.