IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123009886.html
   My bibliography  Save this article

Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system

Author

Listed:
  • Liu, Xianyang
  • Zou, Jun
  • Long, Rui
  • Liu, Zhichun
  • Liu, Wei

Abstract

For renewable energy driven off-grid hydrogen generation systems, the intermittent and instability nature significantly hinders the electrolyzers' service life and operation safety. Here a variable-periodsequence control strategy is developed for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system via multi-layer DC-DC converters, which control power allocation for the PEM electrolyzer according to the accumulated operation durations under different operation states. The dynamic performance under the fixed and variable period sequence control strategies are systematically investigated. Under the fixed period sequence control strategy, less electrolyzer number contributes to deducing standard deviations of rated/fluctuating power operation durations. Under the variable period sequence control strategies, the standard deviations of the operation duration under the rated and fluctuating power state both are much smaller than those under the fixed period sequence control strategy. When longer sequence period employed at higher solar radiation intensity, the minimum standard deviations of the operation duration under the rated and fluctuating power states are decreased by 28.0% and 44.8%, respectively. When longer sequence period employed at lower solar radiation intensity, the minimum standard deviations are decreased by 49.7% and 51.3%, respectively. The variable sequence control strategy can better allocate electrolyzers’ operation states and improve the system operation conditions.

Suggested Citation

  • Liu, Xianyang & Zou, Jun & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009886
    DOI: 10.1016/j.renene.2023.119074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123009886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toghyani, S. & Afshari, E. & Baniasadi, E. & Atyabi, S.A. & Naterer, G.F., 2018. "Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer," Energy, Elsevier, vol. 152(C), pages 237-246.
    2. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    3. Torreglosa, Juan P. & García, Pablo & Fernández, Luis M. & Jurado, Francisco, 2015. "Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system," Renewable Energy, Elsevier, vol. 74(C), pages 326-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    2. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    3. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    4. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    5. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    6. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    7. García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.
    8. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    9. Arash Khalilnejad & Aditya Sundararajan & Alireza Abbaspour & Arif Sarwat, 2016. "Optimal Operation of Combined Photovoltaic Electrolyzer Systems," Energies, MDPI, vol. 9(5), pages 1-12, April.
    10. Guo, Yuwei & Li, Yun & Li, Shuguang & Zhang, Lei & Li, Ying & Wang, Jun, 2015. "Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solut," Energy, Elsevier, vol. 82(C), pages 72-79.
    11. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).
    12. Bhandari, Ramchandra & Subedi, Subodh, 2023. "Evaluation of surplus hydroelectricity potential in Nepal until 2040 and its use for hydrogen production via electrolysis," Renewable Energy, Elsevier, vol. 212(C), pages 403-414.
    13. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    14. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    15. Pablo Gabriel Rullo & Ramon Costa-Castelló & Vicente Roda & Diego Feroldi, 2018. "Energy Management Strategy for a Bioethanol Isolated Hybrid System: Simulations and Experiments," Energies, MDPI, vol. 11(6), pages 1-25, May.
    16. Hassan Salihi & Hyunchul Ju, 2023. "Two-Phase Modeling and Simulations of a Polymer Electrolyte Membrane Water Electrolyzer Considering Key Morphological and Geometrical Features in Porous Transport Layers," Energies, MDPI, vol. 16(2), pages 1-18, January.
    17. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Vipulesh Shardeo & Bishal Dey Sarkar, 2024. "Adoption of hydrogen‐fueled freight transportation: A strategy toward sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 223-240, February.
    19. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    20. Laetitia Uwineza & Hyun-Goo Kim & Jan Kleissl & Chang Ki Kim, 2022. "Technical Control and Optimal Dispatch Strategy for a Hybrid Energy System," Energies, MDPI, vol. 15(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.