IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp501-514.html
   My bibliography  Save this article

A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition

Author

Listed:
  • Guo, Lei
  • Meng, Zhuo
  • Sun, Yize
  • Wang, Libiao

Abstract

When photovoltaic (PV) array is operated under partially shaded condition (PSC), power-voltage curve will show multiply peaks. This causes the inability of conventional maximum power point tracking (MPPT) methods such as hill climbing (HC). To deal with this problem, this paper proposes a new MPPT method based on a modified cat swarm optimization (MCSO) to achieve global maximum power point (GMPP) tracking. To assess the performance of proposed method, different simulations and experiments have been carried out. The proposed method can successfully track GMPP under different PSCs. Furthermore, MCSO based MPPT method shows a high tracking accuracy and convergence speed as compared with other MPPT methods.

Suggested Citation

  • Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:501-514
    DOI: 10.1016/j.energy.2017.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    2. Rautray, Rasmita & Balabantaray, Rakesh Chandra, 2017. "Cat swarm optimization based evolutionary framework for multi document summarization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 174-186.
    3. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    4. Ahmed, Jubaer & Salam, Zainal, 2015. "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, Elsevier, vol. 150(C), pages 97-108.
    5. Ishaque, Kashif & Salam, Zainal & Shamsudin, Amir & Amjad, Muhammad, 2012. "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 99(C), pages 414-422.
    6. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalia Yousri & Thanikanti Sudhakar Babu & Dalia Allam & Vigna. K. Ramachandaramurthy & Eman Beshr & Magdy. B. Eteiba, 2019. "Fractional Chaos Maps with Flower Pollination Algorithm for Partial Shading Mitigation of Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-27, September.
    2. Kishore, D.J. Krishna & Mohamed, M.R. & Sudhakar, K. & Peddakapu, K., 2023. "Swarm intelligence-based MPPT design for PV systems under diverse partial shading conditions," Energy, Elsevier, vol. 265(C).
    3. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    4. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    5. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    6. Ehtisham Lodhi & Fei-Yue Wang & Gang Xiong & Ghulam Ali Mallah & Muhammad Yaqoob Javed & Tariku Sinshaw Tamir & David Wenzhong Gao, 2021. "A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    7. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Marine Predator Algorithm (MPA)-Based MPPT Technique for Solar PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 15(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    2. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    3. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    4. Fathabadi, Hassan, 2016. "Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems," Applied Energy, Elsevier, vol. 173(C), pages 448-459.
    5. Fathabadi, Hassan, 2017. "Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems," Renewable Energy, Elsevier, vol. 106(C), pages 232-242.
    6. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    7. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    8. Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
    9. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    10. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    11. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    12. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    13. Fathabadi, Hassan, 2016. "Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems," Energy, Elsevier, vol. 116(P1), pages 402-416.
    14. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2017. "Enhancing the tracking techniques for the global maximum power point under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1173-1183.
    15. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    16. Ahmed, Jubaer & Salam, Zainal, 2015. "A critical evaluation on maximum power point tracking methods for partial shading in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 933-953.
    17. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    18. Amir, A. & Amir, A. & Selvaraj, J. & Rahim, N.A., 2016. "Study of the MPP tracking algorithms: Focusing the numerical method techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 350-371.
    19. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant," Applied Energy, Elsevier, vol. 158(C), pages 584-596.
    20. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:501-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.