IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014769.html
   My bibliography  Save this article

VMD-ATT-LSTM electricity price prediction based on grey wolf optimization algorithm in electricity markets considering renewable energy

Author

Listed:
  • Xu, Yuzhen
  • Huang, Xin
  • Zheng, Xidong
  • Zeng, Ziyang
  • Jin, Tao

Abstract

Electricity price prediction is essential for the optimal dispatch in power markets, with accurate prediction models being critical for efficient power system operations and market trading decisions. Deep learning networks, with their powerful nonlinear modeling capabilities, have shown promising results in electricity price forecasting. However, their design techniques, especially the selection of network parameters, remain challenging. This indicates that the optimization and exploration of deep learning networks in electricity price forecasting models require further investigation. This paper innovatively proposes a forecasting model that uniquely integrates Variational Mode Decomposition (VMD), Grey Wolf Optimization (GWO), Attention Mechanism (ATT), and Long Short-Term Memory Network (LSTM), optimizing the model from three different perspectives. First, during the data preprocessing phase, the training set is subjected to VMD to reduce noise, thereby enhancing the capture of multi-scale characteristics inherent in electricity price time series. The ATT layer is integrated to adaptively allocate weights, enhancing the model's focus on significant features. The GWO is applied to optimize hyperparameters of the LSTM, accelerating convergence and improving iteration accuracy, thereby reducing model error. A series of experiments were conducted using multiple regional electricity price datasets, evaluated with several metrics including RMSE. The results validated the effectiveness of the proposed three modules in improving the performance of the time series network, with VMD making the most significant contribution. Among all models, VMD-GWO-ATT-LSTM consistently outperformed others, demonstrating its effectiveness and robustness in electricity price forecasting.

Suggested Citation

  • Xu, Yuzhen & Huang, Xin & Zheng, Xidong & Zeng, Ziyang & Jin, Tao, 2024. "VMD-ATT-LSTM electricity price prediction based on grey wolf optimization algorithm in electricity markets considering renewable energy," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014769
    DOI: 10.1016/j.renene.2024.121408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.