IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas036054422201115x.html
   My bibliography  Save this article

Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization

Author

Listed:
  • Meng, Anbo
  • Wang, Peng
  • Zhai, Guangsong
  • Zeng, Cong
  • Chen, Shun
  • Yang, Xiaoyi
  • Yin, Hao

Abstract

Accurate electricity price forecasts is the common concern of market participants. With the integration of high penetration of wind and solar energy resources into the power system, the renewable energy sources will have a great impact on the electricity price volatility undoubtedly. In this regard, a novel attention mechanism (AM) based electricity price forecasting model for electricity market with high proportion of renewable energy is proposed in this paper. In order to investigate the effect of renewable energy on the electricity price prediction, the wind power generation, solar power generation, predicted load and the historical price series are simultaneously taken as the input features. In the data preprocessing stage, the empirical wavelet transform (EWT) is applied to decompose each of the input features into multiple components to avoid learning the autocorrelation of the original sequence. In the model training stage, a hybrid AM-based long short-term memory network (LSTM) is proposed as the forecasting model, aiming to make full use of the AM to dynamically evaluate the importance of different input feature. Furthermore, the crisscross optimization algorithm (CSO) is adopted to retrain the parameters of fully-connected layer so as to further enhance the generalization ability. The proposed method is validated on the datasets of Danish electricity market with a high proportion of renewable energy, and the experimental results show that the proposed model is superior to other hybrid models involved in this study.

Suggested Citation

  • Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s036054422201115x
    DOI: 10.1016/j.energy.2022.124212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201115X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    2. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    3. Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
    4. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    5. Jannik Schütz Roungkvist & Peter Enevoldsen & George Xydis, 2020. "High-Resolution Electricity Spot Price Forecast for the Danish Power Market," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    6. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    7. Oosthuizen, Anna Maria & Inglesi-Lotz, Roula & Thopil, George Alex, 2022. "The relationship between renewable energy and retail electricity prices: Panel evidence from OECD countries," Energy, Elsevier, vol. 238(PB).
    8. Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
    9. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    10. Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
    11. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    12. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    13. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    14. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    15. Hoicka, Christina E. & Lowitzsch, Jens & Brisbois, Marie Claire & Kumar, Ankit & Ramirez Camargo, Luis, 2021. "Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities," Energy Policy, Elsevier, vol. 156(C).
    16. Yu, Bolin & Fang, Debin & Meng, Jingxuan, 2021. "Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China," Energy, Elsevier, vol. 234(C).
    17. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    18. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    19. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    20. Gao, Ciwei & Bompard, Ettore & Napoli, Roberto & Cheng, Haozhong, 2007. "Price forecast in the competitive electricity market by support vector machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 98-113.
    21. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    22. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    23. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    24. Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
    25. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    26. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    2. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    3. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    4. Di Zhu & Yinghong Wang & Fenglin Zhang, 2022. "Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Chen, Xu & Li, Mince & Chen, Zonghai, 2023. "Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    6. Scheben, Heike & Hufendiek, Kai, 2023. "Modelling power prices in markets with high shares of renewable energies and storages—The Norwegian example," Energy, Elsevier, vol. 267(C).
    7. Laiqing Yan & Zutai Yan & Zhenwen Li & Ning Ma & Ran Li & Jian Qin, 2023. "Electricity Market Price Prediction Based on Quadratic Hybrid Decomposition and THPO Algorithm," Energies, MDPI, vol. 16(13), pages 1-18, July.
    8. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2023. "Application of multi-agent EADRC in flexible operation of combined heat and power plant considering carbon emission and economy," Energy, Elsevier, vol. 263(PB).
    9. Li, Ranran, 2023. "Forecasting energy spot prices: A multiscale clustering recognition approach," Resources Policy, Elsevier, vol. 81(C).
    10. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    11. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    12. Chankook Park & Wan Gyu Heo & Myung Eun Lee, 2024. "Study on Consumers’ Perceived Benefits and Risks of Smart Energy System," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 288-300, May.
    13. Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
    14. Chao Zhang & Yihang Zhao & Huiru Zhao, 2022. "A Novel Hybrid Price Prediction Model for Multimodal Carbon Emission Trading Market Based on CEEMDAN Algorithm and Window-Based XGBoost Approach," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    15. Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
    16. Zhiyuan Zhang & Zhanshan Wang, 2023. "Multi-Objective Prediction of Integrated Energy System Using Generative Tractive Network," Mathematics, MDPI, vol. 11(20), pages 1-18, October.
    17. Wang, Jianguo & Han, Lincheng & Zhang, Xiuyu & Wang, Yingzhou & Zhang, Shude, 2023. "Electrical load forecasting based on variable T-distribution and dual attention mechanism," Energy, Elsevier, vol. 283(C).
    18. Adebayo, Tomiwa Sunday & Alola, Andrew Adewale, 2023. "Drivers of natural gas and renewable energy utilization in the USA: How about household energy efficiency-energy expenditure and retail electricity prices?," Energy, Elsevier, vol. 283(C).
    19. Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Fractional-order long-term price guidance mechanism based on bidirectional prediction with attention mechanism for electric vehicle charging," Energy, Elsevier, vol. 293(C).
    20. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    21. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    22. Gaurav Kapoor & Nuttanan Wichitaksorn & Wenjun Zhang, 2023. "Analyzing and forecasting electricity price using regime‐switching models: The case of New Zealand market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2011-2026, December.
    23. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
    2. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    3. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    4. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    5. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    6. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    7. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    8. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    9. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    10. Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).
    11. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    12. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    13. Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
    14. Singh, Priyanka & Kottath, Rahul, 2022. "Influencer-defaulter mutation-based optimization algorithms for predicting electricity prices," Utilities Policy, Elsevier, vol. 79(C).
    15. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    16. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    17. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    18. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    19. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    20. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s036054422201115x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.