IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223030323.html
   My bibliography  Save this article

A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination

Author

Listed:
  • Zheng, Xidong
  • Bai, Feifei
  • Zeng, Ziyang
  • Jin, Tao

Abstract

The proper integration of wind power-driven grids relies heavily on a reliable balance between electricity production and demand. Therefore, accurate prediction is essential for planning and efficient operation of wind power systems to ensure their continuous supply. However, increasingly severe power quality disturbance (PQD) constantly disturbs this equilibrium, which affects the accuracy of wind power prediction to a large extent. For this purpose, this paper developed a novel optimization methodology to improve wind power prediction accuracy considering micro PQD dimension reduction and elimination for wind-storage integrated systems. A novel idea has been presented in this optimization methodology to eliminate the barrier of PQD and wind power prediction. In the micro aspect, a PQD dimension reduction and elimination strategy based on dynamic mode decomposition (DMD) and Wiener Filter (WF) is proposed to eliminate the autonomy of PQD. This elimination of autonomy allows the WF to get a higher signal-to-noise ratio (SNR). In the macro aspect, this paper takes PQD of different complexity into full consideration, and compares their effects on improving wind power prediction accuracy based on deep learning-based approaches. Through the experimental verification, it is confirmed that the proposed DMD-WF optimization method has demonstrated an effective dimension reduction and elimination of PQD. Moreover, it is found that the proposed PQD optimization method contributes to improve the deep learning-based prediction accuracy when PQD is more complex. The proposed methodology creates a novel perspective to improve the short-term wind power prediction accuracy, which provides a theoretical and methodological guidance for future development of large-scale integrated wind-storage systems.

Suggested Citation

  • Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030323
    DOI: 10.1016/j.energy.2023.129638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud, Tawfek & Dong, Z.Y. & Ma, Jin, 2018. "An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine," Renewable Energy, Elsevier, vol. 126(C), pages 254-269.
    2. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    3. Ding, Yunfei & Chen, Zijun & Zhang, Hongwei & Wang, Xin & Guo, Ying, 2022. "A short-term wind power prediction model based on CEEMD and WOA-KELM," Renewable Energy, Elsevier, vol. 189(C), pages 188-198.
    4. Chen, Lei & Xie, Xiaorong & He, Jingbo & Xu, Tao & Xu, Dechao & Ma, Ningning, 2023. "Wideband oscillation monitoring in power systems with high-penetration of renewable energy sources and power electronics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Zheng, Xidong & Bai, Feifei & Zhuang, Zhiyuan & Chen, Zixing & Jin, Tao, 2023. "A new demand response management strategy considering renewable energy prediction and filtering technology," Renewable Energy, Elsevier, vol. 211(C), pages 656-668.
    6. Sasser, Christiana & Yu, Meilin & Delgado, Ruben, 2022. "Improvement of wind power prediction from meteorological characterization with machine learning models," Renewable Energy, Elsevier, vol. 183(C), pages 491-501.
    7. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    8. Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
    9. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
    10. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    11. Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
    12. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    13. Zifa Liu & Xinyi Li & Haiyan Zhao, 2023. "Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction," Energies, MDPI, vol. 16(10), pages 1-24, May.
    14. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
    16. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    17. Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
    18. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    19. Liu, Lei & Liu, Jicheng & Ye, Yu & Liu, Hui & Chen, Kun & Li, Dong & Dong, Xue & Sun, Mingzhai, 2023. "Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty," Renewable Energy, Elsevier, vol. 205(C), pages 598-607.
    20. Wang, Jianing & Zhu, Hongqiu & Zhang, Yingjie & Cheng, Fei & Zhou, Can, 2023. "A novel prediction model for wind power based on improved long short-term memory neural network," Energy, Elsevier, vol. 265(C).
    21. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    22. Hao, Ying & Dong, Lei & Liao, Xiaozhong & Liang, Jun & Wang, Lijie & Wang, Bo, 2019. "A novel clustering algorithm based on mathematical morphology for wind power generation prediction," Renewable Energy, Elsevier, vol. 136(C), pages 572-585.
    23. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Li, Zhuo, 2021. "Feature extraction of meteorological factors for wind power prediction based on variable weight combined method," Renewable Energy, Elsevier, vol. 179(C), pages 1925-1939.
    24. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    25. Che, Jinxing & Yuan, Fang & Deng, Dewen & Jiang, Zheyong, 2023. "Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight," Applied Energy, Elsevier, vol. 331(C).
    26. Duan, Jikai & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Zuo, Hongchao & Bai, Yulong & Chen, Bolong, 2022. "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error," Renewable Energy, Elsevier, vol. 200(C), pages 788-808.
    27. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.
    2. Wang, Cong & He, Yan & Zhang, Hong-li & Ma, Ping, 2024. "Wind power forecasting based on manifold learning and a double-layer SWLSTM model," Energy, Elsevier, vol. 290(C).
    3. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    4. Liu, Hong & Yang, Luoxiao & Zhang, Bingying & Zhang, Zijun, 2023. "A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data," Energy, Elsevier, vol. 283(C).
    5. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    6. Xiaoshuang Huang & Yinbao Zhang & Jianzhong Liu & Xinjia Zhang & Sicong Liu, 2023. "A Short-Term Wind Power Forecasting Model Based on 3D Convolutional Neural Network–Gated Recurrent Unit," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    7. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    8. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    9. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    10. Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
    11. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    12. Zheng, Xidong & Bai, Feifei & Zhuang, Zhiyuan & Chen, Zixing & Jin, Tao, 2023. "A new demand response management strategy considering renewable energy prediction and filtering technology," Renewable Energy, Elsevier, vol. 211(C), pages 656-668.
    13. Zhang, Yagang & Kong, Xue & Wang, Jingchao & Wang, Hui & Cheng, Xiaodan, 2024. "Wind power forecasting system with data enhancement and algorithm improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    14. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
    15. Yang, Mao & Wang, Da & Zhang, Wei, 2024. "A novel ultra short-term wind power prediction model based on double model coordination switching mechanism," Energy, Elsevier, vol. 289(C).
    16. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    17. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    18. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    20. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.