IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v137y2024ics014098832400478x.html
   My bibliography  Save this article

Seasonality in deep learning forecasts of electricity imbalance prices

Author

Listed:
  • Deng, Sinan
  • Inekwe, John
  • Smirnov, Vladimir
  • Wait, Andrew
  • Wang, Chao

Abstract

In this paper, we propose a seasonal attention mechanism, the effectiveness of which is evaluated via the Bidirectional Long Short-Term Memory (BiLSTM) model. We compare its performance with alternative deep learning and machine learning models in forecasting the balancing settlement prices in the electricity market of Great Britain. Critically, the Seasonal Attention-Based BiLSTM framework provides a superior forecast of extreme prices with an out-of-sample gain in the predictability of 11%–15% compared with models in the literature. Our forecasting techniques could aid both market participants, to better manage their risk and assign their assets, and policy makers, to operate the system at lower cost.

Suggested Citation

  • Deng, Sinan & Inekwe, John & Smirnov, Vladimir & Wait, Andrew & Wang, Chao, 2024. "Seasonality in deep learning forecasts of electricity imbalance prices," Energy Economics, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:eneeco:v:137:y:2024:i:c:s014098832400478x
    DOI: 10.1016/j.eneco.2024.107770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832400478X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Forecasting; Electricity; Balance settlement prices; Deep learning; Machine learning;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:137:y:2024:i:c:s014098832400478x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.