Seasonality in deep learning forecasts of electricity imbalance prices
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2024.107770
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
- Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
- Borne, Olivier & Korte, Klaas & Perez, Yannick & Petit, Marc & Purkus, Alexandra, 2018.
"Barriers to entry in frequency-regulation services markets: Review of the status quo and options for improvements,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 605-614.
- Olivier Borne & Klaas Korte & Yannick Perez & Marc Petit & Alexandra Purkus, 2018. "Barriers to entry in frequency-regulation services markets: Review of the status quo and options for improvements," Post-Print hal-01660219, HAL.
- Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
- Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
- Francesco Lisi & Enrico Edoli, 2018. "Analyzing and Forecasting Zonal Imbalance Signs in the Italian Electricity Market," The Energy Journal, , vol. 39(5), pages 1-20, September.
- Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
- Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
- Derek W. Bunn and Stefan O.E. Kermer, 2021. "Statistical Arbitrage and Information Flow in an Electricity Balancing Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
- Luiz Renato Lima & Fanning Meng, 2017. "Out‐of‐Sample Return Predictability: A Quantile Combination Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 877-895, June.
- Kristiansen, Tarjei, 2007. "The Nordic approach to market-based provision of ancillary services," Energy Policy, Elsevier, vol. 35(7), pages 3681-3700, July.
- Möller, Christoph & Rachev, Svetlozar T. & Fabozzi, Frank J., 2011. "Balancing energy strategies in electricity portfolio management," Energy Economics, Elsevier, vol. 33(1), pages 2-11, January.
- Francesco Lisi and Enrico Edoli, 2018. "Analyzing and Forecasting Zonal Imbalance Signs in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
- Derek W. Bunn & Stefan O.E. Kermer, 2021. "Statistical Arbitrage and Information Flow in an Electricity Balancing Market," The Energy Journal, , vol. 42(5), pages 19-40, September.
- Shambora, William E. & Rossiter, Rosemary, 2007. "Are there exploitable inefficiencies in the futures market for oil?," Energy Economics, Elsevier, vol. 29(1), pages 18-27, January.
- Vandezande, Leen & Meeus, Leonardo & Belmans, Ronnie & Saguan, Marcelo & Glachant, Jean-Michel, 2010. "Well-functioning balancing markets: A prerequisite for wind power integration," Energy Policy, Elsevier, vol. 38(7), pages 3146-3154, July.
- Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Papadimitriou, Theophilos & Gogas, Periklis & Stathakis, Efthimios, 2014. "Forecasting energy markets using support vector machines," Energy Economics, Elsevier, vol. 44(C), pages 135-142.
- Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
- Bueno-Lorenzo, Miriam & Moreno, M. Ángeles & Usaola, Julio, 2013. "Analysis of the imbalance price scheme in the Spanish electricity market: A wind power test case," Energy Policy, Elsevier, vol. 62(C), pages 1010-1019.
- Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
- Nikos S. Thomaidis & Georgios D. Dounias, 2012. "A comparison of statistical tests for the adequacy of a neural network regression model," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 437-449, October.
- Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
- Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
- Taylor, James W., 2006. "Density forecasting for the efficient balancing of the generation and consumption of electricity," International Journal of Forecasting, Elsevier, vol. 22(4), pages 707-724.
- Mureddu, Mario & Meyer-Ortmanns, Hildegard, 2018. "Extreme prices in electricity balancing markets from an approach of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1324-1334.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Yuzhen & Huang, Xin & Zheng, Xidong & Zeng, Ziyang & Jin, Tao, 2024. "VMD-ATT-LSTM electricity price prediction based on grey wolf optimization algorithm in electricity markets considering renewable energy," Renewable Energy, Elsevier, vol. 236(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sinan Deng & John Inekwe & Vladimir Smirnov & Andrew Wait & Chao Wang, 2023. "Machine Learning and Deep Learning Forecasts of Electricity Imbalance Prices," Working Papers 2023-03, University of Sydney, School of Economics.
- Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020.
"Comparing the forecasting performances of linear models for electricity prices with high RES penetration,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Working Papers No 2/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Papers 1801.01093, arXiv.org, revised Nov 2019.
- Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
- Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
- Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
- Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016.
"Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system,"
Energy Policy, Elsevier, vol. 94(C), pages 421-431.
- Joan Batalla-Bejerano & Maria Teresa Costa-Campi & Elisa Trujillo-Baute, 2015. "Unexpected consequences of liberalisation: metering, losses, load profiles and cost settlement in Spain’s electricity system," Working Papers 2015/16, Institut d'Economia de Barcelona (IEB).
- Kaneko, Nanae & Fujimoto, Yu & Hayashi, Yasuhiro, 2022. "Sensitivity analysis of factors relevant to extreme imbalance between procurement plans and actual demand: Case study of the Japanese electricity market," Applied Energy, Elsevier, vol. 313(C).
- Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
- Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
- Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
- Karl-Martin Ehrhart & Fabian Ocker, 2021. "Design and regulation of balancing power auctions: an integrated market model approach," Journal of Regulatory Economics, Springer, vol. 60(1), pages 55-73, August.
- Prakash, Abhijith & Bruce, Anna & MacGill, Iain, 2022. "Insights on designing effective and efficient frequency control arrangements from the Australian National Electricity Market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Li, Zheng & Zhou, Bo & Hensher, David A., 2022. "Forecasting automobile gasoline demand in Australia using machine learning-based regression," Energy, Elsevier, vol. 239(PD).
- Wu, Zhaoyuan & Zhou, Ming & Zhang, Zhi & Zhao, Huiru & Wang, Jianxiao & Xu, Jiayu & Li, Gengyin, 2022. "An incentive profit-sharing mechanism for welfare transfer in balancing market integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium: An instrument-based estimation of supply and demand for imbalance energy," Energy Economics, Elsevier, vol. 102(C).
- Frade, Pedro M.S. & Pereira, João Pedro & Santana, J.J.E. & Catalão, J.P.S., 2019. "Wind balancing costs in a power system with high wind penetration – Evidence from Portugal," Energy Policy, Elsevier, vol. 132(C), pages 702-713.
- Michał Narajewski, 2022. "Probabilistic Forecasting of German Electricity Imbalance Prices," Energies, MDPI, vol. 15(14), pages 1-17, July.
- Poplavskaya, Ksenia & Lago, Jesus & Strömer, Stefan & de Vries, Laurens, 2021. "Making the most of short-term flexibility in the balancing market: Opportunities and challenges of voluntary bids in the new balancing market design," Energy Policy, Elsevier, vol. 158(C).
- Micha{l} Narajewski, 2022. "Probabilistic forecasting of German electricity imbalance prices," Papers 2205.11439, arXiv.org.
- Oprea, Simona-Vasilica & Bâra, Adela & Ciurea, Cristian-Eugen, 2022. "A novel cost-revenue allocation computation for the competitiveness of balancing responsible parties, including RES. Insights from the electricity market," Renewable Energy, Elsevier, vol. 199(C), pages 881-894.
More about this item
Keywords
Forecasting; Electricity; Balance settlement prices; Deep learning; Machine learning;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:137:y:2024:i:c:s014098832400478x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.