IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124010899.html
   My bibliography  Save this article

Energy assessment and heat integration of biofuel production from bio-oil produced through fast pyrolysis of sugarcane straw, and its upgrading via hydrotreatment

Author

Listed:
  • Santos, Bruna Stella De Freitas
  • Palacios-Bereche, Milagros Cecilia
  • Gallego, Antonio Garrido
  • Nebra, Silvia Azucena
  • Palacios-Bereche, Reynaldo

Abstract

Sugarcane processing is one of the most important economic activities in Brazil, producing ethanol and sugar for domestic and international markets. Utilising the lignocellulosic residues of this industry, specifically bagasse and straw, would increase the second-generation biofuel production without increasing the sugarcane planted area. Among the processes available, the fast pyrolysis is a thermochemical conversion process that produces mainly bio-oil, a liquid with several advantages over solid biomass, regarding transportation, pumping, storage, and handling. Moreover, the bio-oil can be upgraded to obtain biofuels of higher added-value. Among feasible upgrading technologies, the hydrotreatment is one of the most promising methods for eliminating the reactive functionalities of the bio-oil by removing oxygen or cracking large molecules in the presence of hydrogen; however, this comes at the expense of a significant hydrogen consumption. Thus, the aim of this study is to evaluate the biofuel production through the fast pyrolysis of sugarcane straw, followed by the upgrading of the produced bio-oil via hydrotreatment. The evaluation is carried out by way of energy and mass balances of the processes, performed using the software Aspen Plus. Furthermore, the possibilities of integrating the bio-oil production and upgrading into the conventional ethanol and sugar production process will also be assessed through heat integration, applying the Pinch analysis. Results showed the potential for renewable gasoline and diesel production with yields of 0.086 kg/kg of dry straw and 0.08 kg/kg of dry straw, respectively. Additionally, integrating the pyrolysis process, including the bio-oil upgrading, into the ethanol production process can achieve a liquid fuel production (ethanol, gasoline and diesel) of 2289.8 MJ/t cane, which represents an increase of 29 %, while the surplus electricity increases in 5.3 %, when compared to the conventional ethanol production plant.

Suggested Citation

  • Santos, Bruna Stella De Freitas & Palacios-Bereche, Milagros Cecilia & Gallego, Antonio Garrido & Nebra, Silvia Azucena & Palacios-Bereche, Reynaldo, 2024. "Energy assessment and heat integration of biofuel production from bio-oil produced through fast pyrolysis of sugarcane straw, and its upgrading via hydrotreatment," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124010899
    DOI: 10.1016/j.renene.2024.121021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jafri, Yawer & Wetterlund, Elisabeth & Anheden, Marie & Kulander, Ida & Håkansson, Åsa & Furusjö, Erik, 2019. "Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 1. Product yields & energetic performance," Energy, Elsevier, vol. 166(C), pages 401-413.
    2. Pighinelli, Anna L.M.T. & Schaffer, Mark A. & Boateng, Akwasi A., 2018. "Utilization of eucalyptus for electricity production in Brazil via fast pyrolysis: A techno-economic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 590-597.
    3. Oh, Shinyoung & Lee, Jae Hoon & Choi, Joon Weon, 2020. "Hydrodeoxygenation of crude bio-oil with various metal catalysts in a continuous-flow reactor and evaluation of emulsion properties of upgraded bio-oil with petroleum fuel," Renewable Energy, Elsevier, vol. 160(C), pages 1160-1167.
    4. Kumar, Vineet & Malyan, Sandeep Kumar & Apollon, Wilgince & Verma, Pradeep, 2024. "Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach," Renewable Energy, Elsevier, vol. 228(C).
    5. Shemfe, Mobolaji B. & Whittaker, Carly & Gu, Sai & Fidalgo, Beatriz, 2016. "Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading," Applied Energy, Elsevier, vol. 176(C), pages 22-33.
    6. Carvalho, Danilo José & Veiga, João Paulo Soto & Bizzo, Waldir Antonio, 2017. "Analysis of energy consumption in three systems for collecting sugarcane straw for use in power generation," Energy, Elsevier, vol. 119(C), pages 178-187.
    7. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    8. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
    9. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    10. Faba, Laura & Díaz, Eva & Ordóñez, Salvador, 2015. "Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 273-287.
    11. Dimitriadis, Athanasios & Chrysikou, Loukia P. & Meletidis, George & Terzis, George & Auersvald, Miloš & Kubička, David & Bezergianni, Stella, 2021. "Bio-based refinery intermediate production via hydrodeoxygenation of fast pyrolysis bio-oil," Renewable Energy, Elsevier, vol. 168(C), pages 593-605.
    12. Salina, Fernando Henriques & Molina, Felipe Braggio & Gallego, Antonio Garrido & Palacios-Bereche, Reynaldo, 2021. "Fast pyrolysis of sugarcane straw and its integration into the conventional ethanol production process through Pinch Analysis," Energy, Elsevier, vol. 215(PA).
    13. Spatari, S. & Larnaudie, V. & Mannoh, I. & Wheeler, M.C. & Macken, N.A. & Mullen, C.A. & Boateng, A.A., 2020. "Environmental, exergetic and economic tradeoffs of catalytic- and fast pyrolysis-to-renewable diesel," Renewable Energy, Elsevier, vol. 162(C), pages 371-380.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fioranelli, Anselmo & Bizzo, Waldir A., 2023. "Generation of surplus electricity in sugarcane mills from sugarcane bagasse and straw: Challenges, failures and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    2. Kim, Hoyong & Sriram, Subash & Fang, Tiegang & Kelley, Stephen & Park, Sunkyu, 2021. "An eco-friendly approach for blending of fast-pyrolysis bio-oil in petroleum-derived fuel by controlling ash content of loblolly pine," Renewable Energy, Elsevier, vol. 179(C), pages 2063-2070.
    3. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    4. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    5. Tinôco, Daniel & Genier, Hugo Leonardo André & da Silveira, Wendel Batista, 2021. "Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures," Renewable Energy, Elsevier, vol. 173(C), pages 188-196.
    6. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    7. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    8. Magdalena Szymańska & Tomasz Sosulski & Ewa Szara & Adam Wąs & Piotr Sulewski & Gijs W.P. van Pruissen & René L. Cornelissen, 2019. "Ammonium Sulphate from a Bio-Refinery System as a Fertilizer—Agronomic and Economic Effectiveness on the Farm Scale," Energies, MDPI, vol. 12(24), pages 1-15, December.
    9. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    10. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    11. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    12. Zhao, Yudi & Guo, Xuan & Fang, Yunming, 2024. "Coprocessing of cashew nut shell liquid and phenol model compounds with VGO in a pilot-scale FCC riser," Energy, Elsevier, vol. 307(C).
    13. Negrão, Djanira R. & Grandis, Adriana & Buckeridge, Marcos S. & Rocha, George J.M. & Leal, Manoel Regis L.V. & Driemeier, Carlos, 2021. "Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Salina, Fernando Henriques & Molina, Felipe Braggio & Gallego, Antonio Garrido & Palacios-Bereche, Reynaldo, 2021. "Fast pyrolysis of sugarcane straw and its integration into the conventional ethanol production process through Pinch Analysis," Energy, Elsevier, vol. 215(PA).
    15. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    17. Chen, Chao & Liang, Rui & Ge, Yadong & Li, Jian & Yan, Beibei & Cheng, Zhanjun & Tao, Junyu & Wang, Zhenyu & Li, Meng & Chen, Guanyi, 2022. "Fast characterization of biomass pyrolysis oil via combination of ATR-FTIR and machine learning models," Renewable Energy, Elsevier, vol. 194(C), pages 220-231.
    18. Pradhan, Debalaxmi & Bendu, Harisankar & Singh, R.K. & Murugan, S., 2017. "Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines," Energy, Elsevier, vol. 118(C), pages 600-612.
    19. Maria El Hage & Nicolas Louka & Sid-Ahmed Rezzoug & Thierry Maugard & Sophie Sablé & Mohamed Koubaa & Espérance Debs & Zoulikha Maache-Rezzoug, 2023. "Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects," Energies, MDPI, vol. 16(13), pages 1-31, June.
    20. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124010899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.