IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp1049-1058.html
   My bibliography  Save this article

Hydrogenated orange oil: A waste derived drop-in biojet fuel

Author

Listed:
  • Donoso, David
  • Bolonio, David
  • Ballesteros, Rosario
  • Lapuerta, Magín
  • Canoira, Laureano

Abstract

Orange oil was extracted by steam distillation from the peels of oranges produced as waste in the orange juice factories. This raw orange oil, a potential source for biojet fuel, was analysed by FT-IR and GC-MS, and compared with distilled orange oil and pure d-limonene, which is its main chemical constituent. Both distilled orange oil and d-limonene were hydrogenated under reaction conditions (from 3 to 18 bar) which are mild enough to be industrially feasible, to improve its properties, especially to reduce their sooting tendency. Some important properties such as density, viscosity, heating values, lubricity, flash point, crystallization onset temperature, and smoke point were measured for hydrogenated orange oil and d-limonene (as a reference for comparison) at different conversions. These hydro-biofuels were blended with Jet A1 to check their suitability as biobased blending components for aviation. Based on the results obtained for the main aviation fuel properties, it is concluded that up to 15 vol% of partially hydrogenated orange oil could be blended with Jet A1 without any significant drawback for the performance of the actual airplanes. Flammability reduction systems would be needed to further increase the blend proportion of this drop-in biofuel in Jet A1.

Suggested Citation

  • Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1049-1058
    DOI: 10.1016/j.renene.2022.02.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
    2. Kumar, AR. Mahesh & Kannan, M. & Nataraj, G., 2020. "A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel," Renewable Energy, Elsevier, vol. 146(C), pages 1781-1795.
    3. Chuck, Christopher J. & Donnelly, Joseph, 2014. "The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene," Applied Energy, Elsevier, vol. 118(C), pages 83-91.
    4. Purushothaman, K. & Nagarajan, G., 2009. "Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil," Renewable Energy, Elsevier, vol. 34(1), pages 242-245.
    5. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Tacconi, Daniela, 2014. "Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels," Applied Energy, Elsevier, vol. 136(C), pages 767-774.
    6. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lapuerta, Magín & Rodríguez-Fernández, José & Ramos, Ángel & Donoso, David & Canoira, Laureano, 2023. "Hydrogenated terpenic renewable fuels: Emissions and combustion analysis," Renewable Energy, Elsevier, vol. 208(C), pages 152-161.
    2. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2018. "Assessing the current scenario of the Brazilian biojet market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 426-438.
    2. Lapuerta, Magín & Rodríguez-Fernández, José & Ramos, Ángel & Donoso, David & Canoira, Laureano, 2023. "Hydrogenated terpenic renewable fuels: Emissions and combustion analysis," Renewable Energy, Elsevier, vol. 208(C), pages 152-161.
    3. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    5. Jéssica Marcon Bressanin & Bruno Colling Klein & Mateus Ferreira Chagas & Marcos Djun Barbosa Watanabe & Isabelle Lobo de Mesquita Sampaio & Antonio Bonomi & Edvaldo Rodrigo de Morais & Otávio Cavalet, 2020. "Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries," Energies, MDPI, vol. 13(17), pages 1-22, September.
    6. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    7. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    8. Elias, Andrew Milli & Longati, Andreza Aparecida & de Campos Giordano, Roberto & Furlan, Felipe Fernando, 2021. "Retro-techno-economic-environmental analysis improves the operation efficiency of 1G-2G bioethanol and bioelectricity facilities," Applied Energy, Elsevier, vol. 282(PA).
    9. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    10. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    11. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    13. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    14. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    15. Vijay Kumar, M. & Veeresh Babu, A. & Ravi Kumar, P., 2018. "Experimental investigation on the effects of diesel and mahua biodiesel blended fuel in direct injection diesel engine modified by nozzle orifice diameters," Renewable Energy, Elsevier, vol. 119(C), pages 388-399.
    16. Ettefaghi, Ehsanollah & Rashidi, Alimorad & Ghobadian, Barat & Najafi, G. & Ghasemy, Ebrahim & Khoshtaghaza, Mohammad Hadi & Delavarizadeh, Saman & Mazlan, Mohamed, 2021. "Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission," Energy, Elsevier, vol. 218(C).
    17. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    18. Varsha K. Singh & Sapana Jha & Palak Rana & Renu Soni & Rowland Lalnunpuii & Prashant K. Singh & Rajeshwar P. Sinha & Garvita Singh, 2024. "Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals," Energies, MDPI, vol. 17(2), pages 1-25, January.
    19. Wood, Dallas & Larson, Justin & Jones, Jason & Galperin, Diana & Shelby, Michael & Gonzalez, Manuel, 2022. "World oil price impacts on country-specific fuel markets: Evidence of a muted global rebound effect," Energy Economics, Elsevier, vol. 111(C).
    20. Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1049-1058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.