IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3933-d824880.html
   My bibliography  Save this article

Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production

Author

Listed:
  • Gerrit Ralf Surup

    (Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Hamideh Kaffash

    (Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Yan Ma

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Anna Trubetskaya

    (Department of Chemical Sciences, University of Limerick, V94 T9PX Limerick, Ireland)

  • Johan Berg Pettersen

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Merete Tangstad

    (Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

Abstract

Renewable reductants are intended to significantly reduce CO 2 emissions from ferro-alloy production, e.g., by up to 80% in 2050 in Norway. However, charcoals provide inferior properties compared to fossil fuel-based reductants, which can hamper large replacement ratios. Therefore, conditioning routes from coal beneficiation was investigated to improve the inferior properties of charcoal, such as mechanical strength, volatile matter, CO 2 reactivity and mineral matter content. To evaluate the global warming potential of renewable reductants, the CO 2 emissions of upgraded charcoal were estimated by using a simplified life cycle assessment, focusing on the additional emissions by the energy demand, required chemicals and mass loss for each process stage. The combination of ash removal, briquetting and high-temperature treatment can provide a renewable coke with superior properties compared to charcoal, but concomitantly decrease the available biomass potential by up to 40%, increasing the CO 2 -based global warming potential of industrial produced charcoal to ≈500 kg CO 2 -eq. t − 1 FC. Based on our assumptions, CO 2 emissions from fossil fuel-based reductants can be reduced by up to 85%. A key to minimizing energy or material losses is to combine the pyrolysis and post-treatment processes of renewable reductants to upgrade industrial charcoal on-site at the metallurgical plant. Briquetting showed the largest additional global warming potential from the investigated process routes, whereas the high temperature treatment requires a renewable energy source to be sustainable.

Suggested Citation

  • Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3933-:d:824880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharya, S.C. & Sett, Sivasakthy & Shrestha, Ram M., 1990. "Two approaches for producing briquetted charcoal from wastes and their comparison," Energy, Elsevier, vol. 15(6), pages 499-506.
    2. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    3. Florentino-Madiedo, L. & Díaz-Faes, E. & Barriocanal, C., 2020. "Mechanical strength of bio-coke from briquettes," Renewable Energy, Elsevier, vol. 146(C), pages 1717-1724.
    4. Riva, Lorenzo & Surup, Gerrit Ralf & Buø, Therese Videm & Nielsen, Henrik Kofoed, 2019. "A study of densified biochar as carbon source in the silicon and ferrosilicon production," Energy, Elsevier, vol. 181(C), pages 985-996.
    5. Shemfe, Mobolaji B. & Whittaker, Carly & Gu, Sai & Fidalgo, Beatriz, 2016. "Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading," Applied Energy, Elsevier, vol. 176(C), pages 22-33.
    6. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    7. Williams, Orla & Newbolt, Gary & Eastwick, Carol & Kingman, Sam & Giddings, Donald & Lormor, Stephen & Lester, Edward, 2016. "Influence of mill type on densified biomass comminution," Applied Energy, Elsevier, vol. 182(C), pages 219-231.
    8. García, R. & Gil, M.V. & Fanjul, A. & González, A. & Majada, J. & Rubiera, F. & Pevida, C., 2021. "Residual pyrolysis biochar as additive to enhance wood pellets quality," Renewable Energy, Elsevier, vol. 180(C), pages 850-859.
    9. Surup, Gerrit & Vehus, Tore & Eidem, Per-Anders & Trubetskaya, Anna & Nielsen, Henrik Kofoed, 2019. "Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries," Energy, Elsevier, vol. 167(C), pages 337-345.
    10. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    11. Kong, Lingjun & Tian, ShuangHong & Li, Zhaohui & Luo, Rongshu & Chen, Dingsheng & Tu, YuTing & Xiong, Ya, 2013. "Conversion of recycled sawdust into high HHV and low NOx emission bio-char pellets using lignin and calcium hydroxide blended binders," Renewable Energy, Elsevier, vol. 60(C), pages 559-565.
    12. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    13. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    14. Tremel, Alexander & Haselsteiner, Thomas & Nakonz, Mario & Spliethoff, Hartmut, 2012. "Coal and char properties in high temperature entrained flow gasification," Energy, Elsevier, vol. 45(1), pages 176-182.
    15. Restrepo, Álvaro & Miyake, Raphael & Kleveston, Fábio & Bazzo, Edson, 2012. "Exergetic and environmental analysis of a pulverized coal power plant," Energy, Elsevier, vol. 45(1), pages 195-202.
    16. Trubetskaya, Anna & Surup, Gerrit & Shapiro, Alexander & Bates, Richard B., 2017. "Modeling the influence of potassium content and heating rate on biomass pyrolysis," Applied Energy, Elsevier, vol. 194(C), pages 199-211.
    17. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    20. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surup, Gerrit Ralf & Hunt, Andrew J. & Attard, Thomas & Budarin, Vitaliy L. & Forsberg, Fredrik & Arshadi, Mehrdad & Abdelsayed, Victor & Shekhawat, Dushyant & Trubetskaya, Anna, 2020. "The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries," Energy, Elsevier, vol. 193(C).
    2. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    3. Surup, Gerrit Ralf & Nielsen, Henrik Kofoed & Großarth, Marius & Deike, Rüdiger & Van den Bulcke, Jan & Kibleur, Pierre & Müller, Michael & Ziegner, Mirko & Yazhenskikh, Elena & Beloshapkin, Sergey & , 2020. "Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries," Energy, Elsevier, vol. 193(C).
    4. Yu-Chiao Lu & Liviu Brabie & Andrey V. Karasev & Chuan Wang, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    5. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    6. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    7. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    8. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    9. Gigel Paraschiv & Georgiana Moiceanu & Gheorghe Voicu & Mihai Chitoiu & Petru Cardei & Mirela Nicoleta Dinca & Paula Tudor, 2021. "Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    10. Sandra Kiessling & Hamidreza Gohari Darabkhani & Abdel-Hamid Soliman, 2022. "The Bio Steel Cycle: 7 Steps to Net-Zero CO 2 Emissions Steel Production," Energies, MDPI, vol. 15(23), pages 1-22, November.
    11. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    12. James W. Butler & William Skrivan & Samira Lotfi, 2023. "Identification of Optimal Binders for Torrefied Biomass Pellets," Energies, MDPI, vol. 16(8), pages 1-23, April.
    13. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    14. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    15. Riva, Lorenzo & Surup, Gerrit Ralf & Buø, Therese Videm & Nielsen, Henrik Kofoed, 2019. "A study of densified biochar as carbon source in the silicon and ferrosilicon production," Energy, Elsevier, vol. 181(C), pages 985-996.
    16. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    18. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    19. Azwifunimunwe Tshikovhi & Tshwafo Ellias Motaung, 2023. "Technologies and Innovations for Biomass Energy Production," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    20. Arkadiusz Dyjakon & Łukasz Sobol & Mateusz Krotowski & Krzysztof Mudryk & Krzysztof Kawa, 2020. "The Impact of Particles Comminution on Mechanical Durability of Wheat Straw Briquettes," Energies, MDPI, vol. 13(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3933-:d:824880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.