IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001897.html
   My bibliography  Save this article

Catalytic co-pyrolysis of coffee-grounds and waste polystyrene foam by calcium oxide in bubbling fluidized bed reactor

Author

Listed:
  • Nguyen, Quynh Van
  • Choi, Yeon Seok
  • Jeong, Yeon Woo
  • Han, So Young
  • Choi, Sang Kyu

Abstract

The high concentration of oxygenated components in biomass pyrolysis oil challenges the conversion of biomass to bio-fuels via fast pyrolysis. Herein, calcium oxide was prepared to convert the oxygenated compounds in the pyrolytic products of coffee-grounds to valuable hydrocarbons. Meanwhile, waste polystyrene foam was co-pyrolyzed with coffee-grounds to promote hydrogen transfer reactions, resulting from scission of the polystyrene radicals. The results show that calcium oxide could effectively reduce the concentration of undesired oxygenated compounds like phenols and fatty acids in pyrolytic products. The effects of calcium oxide and polystyrene were mainly reflected in the production of a deoxygenated organic fraction, rich in aromatics and with a considerable calorific value. An organic fraction with an oxygen content of 13.38 wt% was obtained at a catalyst-to-feedstock ratio of 1:8 and an amount of polystyrene foam of 20 wt%. This fraction, due to its properties and its compositions, is considered for use as potential feedstock in the energy market.

Suggested Citation

  • Nguyen, Quynh Van & Choi, Yeon Seok & Jeong, Yeon Woo & Han, So Young & Choi, Sang Kyu, 2024. "Catalytic co-pyrolysis of coffee-grounds and waste polystyrene foam by calcium oxide in bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001897
    DOI: 10.1016/j.renene.2024.120124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    2. Jaafar, Yehya & Abdelouahed, Lokmane & El Samrani, Antoine & El Hage, Roland & Taouk, Bechara, 2023. "Co-pyrolysis of plastic polymers and biomass: Effect of beech wood/plastic ratio and temperature on enhanced oil production in a tubular pyrolyzer," Renewable Energy, Elsevier, vol. 218(C).
    3. Park, Young-Kwon & Jung, Jaehun & Ryu, Sumin & Lee, Hyung Won & Siddiqui, Muhammad Zain & Jae, Jungho & Watanabe, Atsushi & Kim, Young-Min, 2019. "Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5," Applied Energy, Elsevier, vol. 250(C), pages 1706-1718.
    4. Bok, Jin Pil & Choi, Yeon Seok & Choi, Sang Kyu & Jeong, Yeon Woo, 2014. "Fast pyrolysis of Douglas fir by using tilted-slide reactor and characteristics of biocrude-oil fractions," Renewable Energy, Elsevier, vol. 65(C), pages 7-13.
    5. Nawaz, Ahmad & Kumar, Pradeep, 2022. "Pyrolysis behavior of low value biomass (Sesbania bispinosa) to elucidate its bioenergy potential: Kinetic, thermodynamic and prediction modelling using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 257-270.
    6. Qiang Lu & Zhi-Fei Zhang & Chang-Qing Dong & Xi-Feng Zhu, 2010. "Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study," Energies, MDPI, vol. 3(11), pages 1-16, November.
    7. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    8. Dimitriadis, Athanasios & Chrysikou, Loukia P. & Meletidis, George & Terzis, George & Auersvald, Miloš & Kubička, David & Bezergianni, Stella, 2021. "Bio-based refinery intermediate production via hydrodeoxygenation of fast pyrolysis bio-oil," Renewable Energy, Elsevier, vol. 168(C), pages 593-605.
    9. Hassan, H. & Hameed, B.H. & Lim, J.K., 2020. "Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    2. Kakku, Sivasankar & Naidu, Sowkhya & Chakinala, Anand G. & Joshi, Jyeshtharaj & Thota, Chiranjeevi & Maity, Pintu & Sharma, Abhishek, 2024. "Co-processing of organic fraction from groundnut shell biocrude with VGO in FCC unit to produce petrochemical products," Renewable Energy, Elsevier, vol. 224(C).
    3. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    4. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    5. Fan, Yongsheng & Lu, Dongsheng & Wang, Jiawei & Kawamoto, Haruo, 2022. "Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design," Energy, Elsevier, vol. 239(PC).
    6. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
    7. Changheng Li & Qing Huang & Haixiang Zhang & Qingqing Wang & Rixin Xue & Genmao Guo & Jie Hu & Tinghang Li & Junfeng Wang & Shan Hu, 2021. "Characterization of Biochars Produced by Co-Pyrolysis of Hami Melon (Cantaloupes) Straw Mixed with Polypropylene and Their Adsorption Properties of Cadmium," IJERPH, MDPI, vol. 18(21), pages 1-17, October.
    8. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    9. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    10. Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
    11. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    12. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    13. Singh, Rawel & Krishna, Bhavya B. & Mishra, Garima & Kumar, Jitendra & Bhaskar, Thallada, 2016. "Strategies for selection of thermo-chemical processes for the valorisation of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 226-237.
    14. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    15. Hossain, Abul Kalam & Sharma, Vikas & Serrano, Clara & Krishnasamy, Anand & Ganesh, Duraisamy, 2024. "Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine," Renewable Energy, Elsevier, vol. 222(C).
    16. Zhijun Zhang & Shujuan Sui & Fengqiang Wang & Qingwen Wang & Charles U. Pittman, 2013. "Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid," Energies, MDPI, vol. 6(9), pages 1-20, September.
    17. Marcin Bielecki & Valentina Zubkova & Andrzej Strojwas, 2023. "An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Py," Energies, MDPI, vol. 16(6), pages 1-16, March.
    18. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    19. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.