IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas0360544220321733.html
   My bibliography  Save this article

Fast pyrolysis of sugarcane straw and its integration into the conventional ethanol production process through Pinch Analysis

Author

Listed:
  • Salina, Fernando Henriques
  • Molina, Felipe Braggio
  • Gallego, Antonio Garrido
  • Palacios-Bereche, Reynaldo

Abstract

One way to improve the energy and environmental efficiency of an ethanol production process is through product diversification, as well as the use of agricultural residues via thermochemical routes such as fast pyrolysis. Thus, this study assesses the integration of fast pyrolysis of sugarcane straw into the conventional ethanol production process. The fast pyrolysis process was modelled and simulated in the Aspen Plus® software, using the Lumped Reaction kinetic model. The heat integration procedure was performed using the Pinch analysis, utilising the simulation results and assuming different percentages of straw recovery from the field (25%, 50%, and 75%). The straw pyrolysis model was validated with experimental data from other authors of the literature. The assumed configuration presented itself as self-sufficient in energy terms. Among several evaluated cases, those where heat integration was applied showed a significant increase in surplus electricity (Case IV 30.6%, Case VI 34.8%, and Case VIII 46.4%) in comparison to the Base Case (Case I). Thus, heat integration promotes a rise in energy efficiency, as well as product diversification in ethanol production plants.

Suggested Citation

  • Salina, Fernando Henriques & Molina, Felipe Braggio & Gallego, Antonio Garrido & Palacios-Bereche, Reynaldo, 2021. "Fast pyrolysis of sugarcane straw and its integration into the conventional ethanol production process through Pinch Analysis," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220321733
    DOI: 10.1016/j.energy.2020.119066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gautam, Neha & Chaurasia, Ashish, 2020. "Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process," Energy, Elsevier, vol. 190(C).
    2. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    3. Ding, Yanming & Zhang, Juan & He, Qize & Huang, Biqing & Mao, Shaohua, 2019. "The application and validity of various reaction kinetic models on woody biomass pyrolysis," Energy, Elsevier, vol. 179(C), pages 784-791.
    4. Carvalho, Danilo José & Veiga, João Paulo Soto & Bizzo, Waldir Antonio, 2017. "Analysis of energy consumption in three systems for collecting sugarcane straw for use in power generation," Energy, Elsevier, vol. 119(C), pages 178-187.
    5. Pina, Eduardo A. & Palacios-Bereche, Reynaldo & Chavez-Rodriguez, Mauro F. & Ensinas, Adriano V. & Modesto, Marcelo & Nebra, Silvia A., 2017. "Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane – Evaluation of different plant configurations," Energy, Elsevier, vol. 138(C), pages 1263-1280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    2. Santos, Bruna Stella De Freitas & Palacios-Bereche, Milagros Cecilia & Gallego, Antonio Garrido & Nebra, Silvia Azucena & Palacios-Bereche, Reynaldo, 2024. "Energy assessment and heat integration of biofuel production from bio-oil produced through fast pyrolysis of sugarcane straw, and its upgrading via hydrotreatment," Renewable Energy, Elsevier, vol. 232(C).
    3. Fioranelli, Anselmo & Bizzo, Waldir A., 2023. "Generation of surplus electricity in sugarcane mills from sugarcane bagasse and straw: Challenges, failures and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    2. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    3. Biao Wang & Na Liu & Shanshan Wang & Xiaoxian Li & Rui Li & Yulong Wu, 2023. "Study on Co-Pyrolysis of Coal and Biomass and Process Simulation Optimization," Sustainability, MDPI, vol. 15(21), pages 1-16, October.
    4. Santos, Bruna Stella De Freitas & Palacios-Bereche, Milagros Cecilia & Gallego, Antonio Garrido & Nebra, Silvia Azucena & Palacios-Bereche, Reynaldo, 2024. "Energy assessment and heat integration of biofuel production from bio-oil produced through fast pyrolysis of sugarcane straw, and its upgrading via hydrotreatment," Renewable Energy, Elsevier, vol. 232(C).
    5. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
    6. Sahar Safarian & Magnus Rydén & Matty Janssen, 2022. "Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling," Energies, MDPI, vol. 15(11), pages 1-18, May.
    7. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    8. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    9. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    10. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    11. Jin, Yanghao & Liu, Sirui & Shi, Ziyi & Wang, Shule & Wen, Yuming & Zaini, Ilman Nuran & Tang, Chuchu & Hedenqvist, Mikael S. & Lu, Xincheng & Kawi, Sibudjing & Wang, Chi-Hwa & Jiang, Jianchun & Jönss, 2024. "A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass," Energy, Elsevier, vol. 295(C).
    12. Patel, Sanjay K.S. & Kondaveeti, Sanath & Otari, Sachin V. & Pagolu, Ravi T. & Jeong, Seong Hun & Kim, Sun Chang & Cho, Byung-Kwan & Kang, Yun Chan & Lee, Jung-Kul, 2018. "Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila," Energy, Elsevier, vol. 145(C), pages 477-485.
    13. Negrão, Djanira R. & Grandis, Adriana & Buckeridge, Marcos S. & Rocha, George J.M. & Leal, Manoel Regis L.V. & Driemeier, Carlos, 2021. "Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    15. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    16. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    17. Safavi, Aysan & Richter, Christiaan & Unnthorsson, Runar, 2023. "Revisiting the reaction scheme of slow pyrolysis of woody biomass," Energy, Elsevier, vol. 280(C).
    18. Vera Marcantonio & Luisa Di Paola & Marcello De Falco & Mauro Capocelli, 2023. "Modeling of Biomass Gasification: From Thermodynamics to Process Simulations," Energies, MDPI, vol. 16(20), pages 1-30, October.
    19. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Fioranelli, Anselmo & Bizzo, Waldir A., 2023. "Generation of surplus electricity in sugarcane mills from sugarcane bagasse and straw: Challenges, failures and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220321733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.