IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i3p299-309.html
   My bibliography  Save this article

Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil

Author

Listed:
  • Escobedo, João F.
  • Gomes, Eduardo N.
  • Oliveira, Amauri P.
  • Soares, Jacyra

Abstract

In this analysis, using available hourly and daily radiometric data performed at Botucatu, Brazil, several empirical models relating ultraviolet (UV), photosynthetically active (PAR) and near infrared (NIR) solar global components with solar global radiation (G) are established. These models are developed and discussed through clearness index KT (ratio of the global-to-extraterrestrial solar radiation). Results obtained reveal that the proposed empirical models predict hourly and daily values accurately. Finally, the overall analysis carried out demonstrates that the sky conditions are more important in developing correlation models between the UV component and the global solar radiation. The linear regression models derived to estimate PAR and NIR components may be obtained without sky condition considerations within a maximum variation of 8%. In the case of UV, not taking into consideration the sky condition may cause a discrepancy of up to 18% for hourly values and 15% for daily values.

Suggested Citation

  • Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:3:p:299-309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00108-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacovides, C.P. & Assimakopoulos, V.D. & Tymvios, F.S. & Theophilou, K. & Asimakopoulos, D.N., 2006. "Solar global UV (280–380nm) radiation and its relationship with solar global radiation measured on the island of Cyprus," Energy, Elsevier, vol. 31(14), pages 2728-2738.
    2. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    3. Murillo, W & Cañada, J & Pedrós, G, 2003. "Correlation between global ultraviolet (290–385nm) and global irradiation in Valencia and Cordoba (Spain)," Renewable Energy, Elsevier, vol. 28(3), pages 409-418.
    4. Oliveira, Amauri P. & Escobedo, João F. & Machado, Antonio J. & Soares, Jacyra, 2002. "Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil," Applied Energy, Elsevier, vol. 71(1), pages 59-73, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lunche & Gong, Wei & Ma, Yingying & Hu, Bo & Wang, Wenling & Zhang, Miao, 2013. "Analysis of ultraviolet radiation in Central China from observation and estimation," Energy, Elsevier, vol. 59(C), pages 764-774.
    2. Hu, Bo & Liu, Hui & Wang, Yuesi, 2016. "Investigation of the variability of photosynthetically active radiation in the Tibetan Plateau, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 240-248.
    3. Duan, Qiuhua & Feng, Yanxiao & Wang, Julian, 2021. "Clustering of visible and infrared solar irradiance for solar architecture design and analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 668-677.
    4. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
    5. Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
    6. Ousmane Wane & Julián A. Ramírez Ceballos & Francisco Ferrera-Cobos & Ana A. Navarro & Rita X. Valenzuela & Luis F. Zarzalejo, 2022. "Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain," Land, MDPI, vol. 11(10), pages 1-25, October.
    7. Porfirio, Anthony Carlos Silva & De Souza, José Leonaldo & Lyra, Gustavo Bastos & Maringolo Lemes, Marco Antonio, 2012. "An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil," Energy, Elsevier, vol. 44(1), pages 584-592.
    8. Kaplanis, S. & Kaplani, E., 2010. "Stochastic prediction of hourly global solar radiation for Patra, Greece," Applied Energy, Elsevier, vol. 87(12), pages 3748-3758, December.
    9. Marco Hernandez Velasco, 2021. "Enabling Year-round Cultivation in the Nordics-Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral," Agriculture, MDPI, vol. 11(12), pages 1-31, December.
    10. Lisdelys González-Rodríguez & Amauri Pereira de Oliveira & Lien Rodríguez-López & Jorge Rosas & David Contreras & Ana Carolina Baeza, 2021. "A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling," Energies, MDPI, vol. 14(2), pages 1-20, January.
    11. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    12. Dal Pai, Alexandre & Escobedo, João Francisco & Dal Pai, Enzo & de Oliveira, Amauri Pereira & Soares, Jacyra Ramos & Codato, Georgia, 2016. "MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover," Renewable Energy, Elsevier, vol. 99(C), pages 754-763.
    13. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    14. Almorox, J. & Hontoria, C. & Benito, M., 2011. "Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain)," Applied Energy, Elsevier, vol. 88(5), pages 1703-1709, May.
    15. Wang, Lunche & Gong, Wei & Li, Chen & Lin, Aiwen & Hu, Bo & Ma, Yingying, 2013. "Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China," Applied Energy, Elsevier, vol. 111(C), pages 1010-1017.
    16. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    17. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2011. "Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 169-178.
    18. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    19. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2011. "Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 169-178.
    2. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    3. Farhadi, Rouhollah & Taki, Morteza, 2020. "The energy gain reduction due to shadow inside a flat-plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 730-740.
    4. Ibrahim M. Kadad & Ashraf A. Ramadan & Kandil M. Kandil & Adel A. Ghoneim, 2022. "Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate," Energies, MDPI, vol. 15(9), pages 1-19, April.
    5. Saioa Etxebarria Berrizbeitia & Eulalia Jadraque Gago & Tariq Muneer, 2020. "Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis," Energies, MDPI, vol. 13(3), pages 1-23, February.
    6. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    7. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
    8. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    9. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    10. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    11. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    12. Božnar, Marija Zlata & Grašič, Boštjan & Oliveira, Amauri Pereira de & Soares, Jacyra & Mlakar, Primož, 2017. "Spatially transferable regional model for half-hourly values of diffuse solar radiation for general sky conditions based on perceptron artificial neural networks," Renewable Energy, Elsevier, vol. 103(C), pages 794-810.
    13. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    14. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    15. Wang, Lunche & Gong, Wei & Luo, Ming & Wang, Wenfeng & Hu, Bo & Zhang, Ming, 2015. "Comparison of different UV models for cloud effect study," Energy, Elsevier, vol. 80(C), pages 695-705.
    16. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    17. Yao, Wanxiang & Zhang, Chunxiao & Hao, Haodong & Wang, Xiao & Li, Xianli, 2018. "A support vector machine approach to estimate global solar radiation with the influence of fog and haze," Renewable Energy, Elsevier, vol. 128(PA), pages 155-162.
    18. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    19. Li, Huashan & Bu, Xianbiao & Lian, Yongwang & Zhao, Liang & Ma, Weibin, 2012. "Further investigation of empirically derived models with multiple predictors in estimating monthly average daily diffuse solar radiation over China," Renewable Energy, Elsevier, vol. 44(C), pages 469-473.
    20. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:3:p:299-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.