IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i5p1263-1277.html
   My bibliography  Save this article

Two‐stage credit risk prediction framework based on three‐way decisions with automatic threshold learning

Author

Listed:
  • Yusheng Li
  • Mengyi Sha

Abstract

Credit risk prediction is a binary classification problem. Using two‐way decisions to classify defaulters may lead to decision errors due to insufficient information. To solve this issue, in addition to identifying borrowers as defaulters and nondefaulters, this paper introduced the delay‐decision mechanism in three‐way decisions, so that records acquiring more information do not make decisions immediately. A two‐stage credit risk prediction framework based on three‐way decisions was proposed to reduce decision risk. In this framework, the decision cost values of three‐way decisions were simplified by analyzing the credit risk prediction, and the expression of threshold calculation was also modified. An optimization objective was built according to the trade‐off between information gain and decision cost, and the particle swarm optimization algorithm was applied to learn the decision thresholds. After adding more supplementary information, the samples in the delayed‐decision region were made further decisions. A dataset from a commercial bank in China was employed to conduct experiments, and the results demonstrated that our proposed method outperformed various base classifiers.

Suggested Citation

  • Yusheng Li & Mengyi Sha, 2024. "Two‐stage credit risk prediction framework based on three‐way decisions with automatic threshold learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1263-1277, August.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1263-1277
    DOI: 10.1002/for.3074
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3074
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    2. Zeitsch, Peter J., 2019. "A jump model for credit default swaps with hierarchical clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 737-775.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    2. Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
    3. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    4. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    5. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    6. John Martin & Sona Taheri & Mali Abdollahian, 2024. "Optimizing Ensemble Learning to Reduce Misclassification Costs in Credit Risk Scorecards," Mathematics, MDPI, vol. 12(6), pages 1-15, March.
    7. Yang Liu & Fei Huang & Lili Ma & Qingguo Zeng & Jiale Shi, 2024. "Credit scoring prediction leveraging interpretable ensemble learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 286-308, March.
    8. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    9. Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
    10. Emmanuel Flachaire & Sullivan Hué & Sébastien Laurent & Gilles Hacheme, 2024. "Interpretable Machine Learning Using Partial Linear Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 519-540, June.
    11. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    12. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    13. Dangxing Chen & Weicheng Ye, 2022. "Generalized Groves of Neural Additive Models: Pursuing transparent and accurate machine learning models in finance," Papers 2209.10082, arXiv.org, revised Jul 2024.
    14. Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
    15. Chi, Guotai & Dong, Bingjie & Zhou, Ying & Jin, Peng, 2024. "Long-horizon predictions of credit default with inconsistent customers," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    16. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    17. Kun Liu & Jin Zhao, 2024. "KACDP: A Highly Interpretable Credit Default Prediction Model," Papers 2411.17783, arXiv.org.
    18. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
    19. Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
    20. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1263-1277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.