IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v270y2020ics0306261920307029.html
   My bibliography  Save this article

A hierarchical clustering decomposition algorithm for optimizing renewable power systems with storage

Author

Listed:
  • Tso, William W.
  • Demirhan, C. Doga
  • Heuberger, Clara F.
  • Powell, Joseph B.
  • Pistikopoulos, Efstratios N.

Abstract

Intermittent solar and wind availabilities pose design and operational challenges for renewable power systems because they are asynchronous with consumer demand. To align this supply-demand mismatch, optimization-based design and scheduling models have been developed to minimize the capital and operational costs associated with power production and energy storage. However, hourly time discretization and large time horizons used to describe short- and long-term solar and wind dynamics, demand fluctuations, & price changes significantly increase the computational burden of solving these models. A decomposition algorithm based on agglomerative hierarchical clustering (AHC) is developed to alleviate the model complexity and optimize the system over representative time periods, instead of every hour. An advantage for AHC compared to other clustering methods is the preservation of time chronology, which is important for energy storage applications. The algorithm is applied to investigate a renewable power system with battery storage in New York City. Results show that a few representative time periods (5–15 days) sufficiently capture the system performance within 5% of the true optimal solution. The decomposition algorithm is suitable for investigating any optimization problem with time series data.

Suggested Citation

  • Tso, William W. & Demirhan, C. Doga & Heuberger, Clara F. & Powell, Joseph B. & Pistikopoulos, Efstratios N., 2020. "A hierarchical clustering decomposition algorithm for optimizing renewable power systems with storage," Applied Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:appene:v:270:y:2020:i:c:s0306261920307029
    DOI: 10.1016/j.apenergy.2020.115190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    2. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    3. Tietjen, Oliver & Pahle, Michael & Fuss, Sabine, 2016. "Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets," Energy Economics, Elsevier, vol. 58(C), pages 174-185.
    4. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    5. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    6. Ministry of Electricity and Energy of the Union of Myanmar & The Economic Research Institute for ASEAN and East Asia, 2019. "Myanmar Energy Statistics 2019," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2019-myanmar-energy-stati, August.
    7. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    8. Lara, Cristiana L. & Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Grossmann, Ignacio E., 2018. "Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1037-1054.
    9. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    10. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    11. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    12. Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chao & Lasaulce, Samson & Hennebel, Martin & Saludjian, Lucas & Panciatici, Patrick & Poor, H. Vincent, 2021. "Decision-making oriented clustering: Application to pricing and power consumption scheduling," Applied Energy, Elsevier, vol. 297(C).
    2. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    3. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    4. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    5. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    6. Arjmand, Reza & McPherson, Madeleine, 2022. "Canada's electricity system transition under alternative policy scenarios," Energy Policy, Elsevier, vol. 163(C).
    7. Kakodkar, R. & He, G. & Demirhan, C.D. & Arbabzadeh, M. & Baratsas, S.G. & Avraamidou, S. & Mallapragada, D. & Miller, I. & Allen, R.C. & Gençer, E. & Pistikopoulos, E.N., 2022. "A review of analytical and optimization methodologies for transitions in multi-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
    9. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    10. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Domínguez, R. & Vitali, S., 2021. "Multi-chronological hierarchical clustering to solve capacity expansion problems with renewable sources," Energy, Elsevier, vol. 227(C).
    12. Demirhan, C. Doga & Tso, William W. & Powell, Joseph B. & Pistikopoulos, Efstratios N., 2021. "A multi-scale energy systems engineering approach towards integrated multi-product network optimization," Applied Energy, Elsevier, vol. 281(C).
    13. Huang, Nantian & Zhao, Xuanyuan & Guo, Yu & Cai, Guowei & Wang, Rijun, 2023. "Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Kuepper, Lucas Elias & Teichgraeber, Holger & Baumgärtner, Nils & Bardow, André & Brandt, Adam R., 2022. "Wind data introduce error in time-series reduction for capacity expansion modelling," Energy, Elsevier, vol. 256(C).
    3. Teichgraeber, Holger & Küpper, Lucas Elias & Brandt, Adam R., 2021. "Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation," Applied Energy, Elsevier, vol. 304(C).
    4. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    5. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    6. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    7. Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
    8. Gonzato, Sebastian & Bruninx, Kenneth & Delarue, Erik, 2021. "Long term storage in generation expansion planning models with a reduced temporal scope," Applied Energy, Elsevier, vol. 298(C).
    9. Teichgraeber, Holger & Lindenmeyer, Constantin P. & Baumgärtner, Nils & Kotzur, Leander & Stolten, Detlef & Robinius, Martin & Bardow, André & Brandt, Adam R., 2020. "Extreme events in time series aggregation: A case study for optimal residential energy supply systems," Applied Energy, Elsevier, vol. 275(C).
    10. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    11. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    12. Rigo-Mariani, Rémy, 2022. "Optimized time reduction models applied to power and energy systems planning – Comparison with existing methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Zhang, Chao & Lasaulce, Samson & Hennebel, Martin & Saludjian, Lucas & Panciatici, Patrick & Poor, H. Vincent, 2021. "Decision-making oriented clustering: Application to pricing and power consumption scheduling," Applied Energy, Elsevier, vol. 297(C).
    14. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    15. Stefanie Buchholz & Mette Gamst & David Pisinger, 2020. "Finding a Portfolio of Near-Optimal Aggregated Solutions to Capacity Expansion Energy System Models," SN Operations Research Forum, Springer, vol. 1(1), pages 1-40, March.
    16. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    17. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    18. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    19. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    20. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:270:y:2020:i:c:s0306261920307029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.