IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v204y2023icp485-492.html
   My bibliography  Save this article

Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea

Author

Listed:
  • Hong, Sanghyun
  • Kim, Eunsung
  • Jeong, Saerok

Abstract

South Korea announced a hydrogen economy roadmap and hydrogen regulations aligned with its decarbonization plan. However, the environmental, economic, and social sustainability of the hydrogen economy in South Korea has not been thoroughly studied. Under the Energy Trilemma framework, we compared the positive and negative impacts of hydrogen with other energy carriers, including nuclear, coal, gas, and renewables. The selected evaluation criteria included the energy return on energy investment, greenhouse gas emissions, levelized cost of electricity, import dependency, and long-term energy storage. As a result, we argue that green hydrogen improves environmental sustainability and energy security by reducing the carbon emission intensity of the energy sector and energy dependency on imported sources. We propose three critical policy implications to maximize the benefits of hydrogen while minimizing its negative economic impact. First, the rapid expansion of renewables, particularly large-scale wind power, is required. Second, clean hydrogen portfolio standards must be aligned with South Korea's decarbonization plan. Third, governmental investment in research and development activities and demonstration projects will reduce hydrogen production costs by maximizing the utilization of renewable resources.

Suggested Citation

  • Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
  • Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:485-492
    DOI: 10.1016/j.renene.2023.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baeyens, Jan & Zhang, Huili & Nie, Jiapei & Appels, Lise & Dewil, Raf & Ansart, Renaud & Deng, Yimin, 2020. "Reviewing the potential of bio-hydrogen production by fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Ki, Jaehong & Yun, Sun-Jin & Kim, Woo-Chang & Oh, Subin & Ha, Jihun & Hwangbo, Eunyoung & Lee, Hyoeun & Shin, Sumin & Yoon, Seulki & Youn, Hyewon, 2022. "Local residents’ attitudes about wind farms and associated noise annoyance in South Korea," Energy Policy, Elsevier, vol. 163(C).
    3. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    4. Doukas, Haris Ch. & Andreas, Botsikas M. & Psarras, John E., 2007. "Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables," European Journal of Operational Research, Elsevier, vol. 182(2), pages 844-855, October.
    5. Eypasch, Martin & Schimpe, Michael & Kanwar, Aastha & Hartmann, Tobias & Herzog, Simon & Frank, Torsten & Hamacher, Thomas, 2017. "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers," Applied Energy, Elsevier, vol. 185(P1), pages 320-330.
    6. Ralf Havertz, 2021. "South Korea’s hydrogen economy program as a case of weak ecological modernization," Asia Europe Journal, Springer, vol. 19(2), pages 209-226, June.
    7. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    8. Shuo Li & Huili Zhang & Jiapei Nie & Raf Dewil & Jan Baeyens & Yimin Deng, 2021. "The Direct Reduction of Iron Ore with Hydrogen," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    9. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    10. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    11. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    12. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    13. Atlason, Reynir & Unnthorsson, Runar, 2014. "Ideal EROI (energy return on investment) deepens the understanding of energy systems," Energy, Elsevier, vol. 67(C), pages 241-245.
    14. Samsatli, Sheila & Samsatli, Nouri J., 2019. "The role of renewable hydrogen and inter-seasonal storage in decarbonising heat – Comprehensive optimisation of future renewable energy value chains," Applied Energy, Elsevier, vol. 233, pages 854-893.
    15. Akito Ozawa & Mai Inoue & Naomi Kitagawa & Ryoji Muramatsu & Yurie Anzai & Yutaka Genchi & Yuki Kudoh, 2017. "Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains," Sustainability, MDPI, vol. 9(7), pages 1-26, June.
    16. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    17. Athanasios Pliousis, Kostas Andriosopoulos, Michalis Doumpos, and Emilios Galariotis, 2019. "A Multicriteria Assessment Approach to the Energy Trilemma," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    18. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    19. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    20. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    21. Lorién Gracia & Pedro Casero & Cyril Bourasseau & Alexandre Chabert, 2018. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment," Energies, MDPI, vol. 11(11), pages 1-16, November.
    22. Choi, Wonjae & Yoo, Eunji & Seol, Eunsu & Kim, Myoungsoo & Song, Han Ho, 2020. "Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea," Applied Energy, Elsevier, vol. 265(C).
    23. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives," Energies, MDPI, vol. 13(21), pages 1-28, November.
    24. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    25. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    26. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    27. Deng, Yimin & Dewil, Raf & Appels, Lise & Li, Shuo & Baeyens, Jan & Degrève, Jan & Wang, Guirong, 2021. "Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making," Renewable Energy, Elsevier, vol. 170(C), pages 800-810.
    28. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    29. Marco Raugei, 2019. "Net energy analysis must not compare apples and oranges," Nature Energy, Nature, vol. 4(2), pages 86-88, February.
    30. Anwar, Javed, 2016. "Analysis of energy security, environmental emission and fuel import costs under energy import reduction targets: A case of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1065-1078.
    31. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    32. Purna Chandra Rao & Minyoung Yoon, 2020. "Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress," Energies, MDPI, vol. 13(22), pages 1-23, November.
    33. Kim, Eun-Sung & Chung, Ji-Bum, 2019. "The memory of place disruption, senses, and local opposition to Korean wind farms," Energy Policy, Elsevier, vol. 131(C), pages 43-52.
    34. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    35. Lewis C. King & Jeroen C. J. M. van den Bergh, 2018. "Implications of net energy-return-on-investment for a low-carbon energy transition," Nature Energy, Nature, vol. 3(4), pages 334-340, April.
    36. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    37. Sung-Hyun Hwang & Mun-Kyeom Kim & Ho-Sung Ryu, 2019. "Real Levelized Cost of Energy with Indirect Costs and Market Value of Variable Renewables: A Study of the Korean Power Market," Energies, MDPI, vol. 12(13), pages 1-18, June.
    38. Forrest, Kate & Mac Kinnon, Michael & Tarroja, Brian & Samuelsen, Scott, 2020. "Estimating the technical feasibility of fuel cell and battery electric vehicles for the medium and heavy duty sectors in California," Applied Energy, Elsevier, vol. 276(C).
    39. Headley, Alexander J. & Copp, David A., 2020. "Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study," Energy, Elsevier, vol. 198(C).
    40. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    41. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    42. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.
    43. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Air-breathing polymer electrolyte fuel cells: A review," Renewable Energy, Elsevier, vol. 213(C), pages 86-108.
    2. Gyeong-Taek Do & Eun-Tae Son & Byeong-Chan Oh & Hong-Joo Kim & Ho-Sung Ryu & Jin-Tae Cho & Sung-Yul Kim, 2023. "Technical Impacts of Virtual Clean Hydrogen Plants: Promoting Energy Balance and Resolving Transmission Congestion Challenges," Energies, MDPI, vol. 16(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    2. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    4. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    5. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    6. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    7. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
    8. Diesendorf, M. & Wiedmann, T., 2020. "Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity," Ecological Economics, Elsevier, vol. 176(C).
    9. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    10. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    11. Emmanuel Aramendia & Paul E. Brockway & Peter G. Taylor & Jonathan B. Norman & Matthew K. Heun & Zeke Marshall, 2024. "Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems," Nature Energy, Nature, vol. 9(7), pages 803-816, July.
    12. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    13. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    14. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    15. Huang, Chen & Gu, Baihe & Chen, Yingchao & Tan, Xianchun & Feng, Lianyong, 2019. "Energy return on energy, carbon, and water investment in oil and gas resource extraction: Methods and applications to the Daqing and Shengli oilfields," Energy Policy, Elsevier, vol. 134(C).
    16. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.
    18. Raugei, Marco & Leccisi, Enrica & Fthenakis, Vasilis & Escobar Moragas, Rodrigo & Simsek, Yeliz, 2018. "Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios," Energy, Elsevier, vol. 162(C), pages 659-668.
    19. Roberto Leonardo Rana & Mariarosaria Lombardi & Pasquale Giungato & Caterina Tricase, 2020. "Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers," Administrative Sciences, MDPI, vol. 10(2), pages 1-17, March.
    20. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:204:y:2023:i:c:p:485-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.