IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v204y2023icp338-346.html
   My bibliography  Save this article

Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq

Author

Listed:
  • Ghanim, Marrwa S.
  • Farhan, Ammar A.

Abstract

Ambitious plans for the decarbonization of the global energy system necessitate the scaling up of renewable energy exploitation. This could render the energy supply system more susceptible to the effects of climate change as most renewables are climate-dependent by nature. Therefore, understanding the consequences of climate change on renewable energy systems at a regional level plays an important role in the financial management, process optimization, and energy yield assessment of these systems. In this work, the key objective is to examine the projected impacts of surface insolation and temperature fluctuations on the future photovoltaic (PV) energy potentials in Iraq. Projections are quantified across two climate scenarios, RCP4.5 and RCP8.5, which represent the intermediate and worst-case scenarios in which insolation will rise by 4.5 and 8.5 W/m2 by the beginning of the next century. The results show that the average temperature across the country is anticipated to rise by 1.5 °C and 2.4 °C under RCP4.5 and RCP8.5, respectively. The results also show that the change in solar PV potential relative to current climatic conditions, would be −0.3 to 8.1% under RCP4.5 while it is −5.1 to 6.3% under RCP8.5 by the beginning of the next century. The highest potentials are predicted in the western parts, and the greatest drops are in the southeastern parts. Temporal stability of PV potentials also appears to be little affected by future climatic scenarios, with some southern parts even indicating a little positive rise. So, even though climate change is expected to cause small drops in PV output in some areas, it is unlikely to pose a danger under RCP4.5 to PV productivity in Iraq.

Suggested Citation

  • Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
  • Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:338-346
    DOI: 10.1016/j.renene.2023.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaetani, Marco & Huld, Thomas & Vignati, Elisabetta & Monforti-Ferrario, Fabio & Dosio, Alessandro & Raes, Frank, 2014. "The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 706-716.
    2. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    3. Dutta, Riya & Chanda, Kironmala & Maity, Rajib, 2022. "Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis," Renewable Energy, Elsevier, vol. 188(C), pages 819-829.
    4. Zhao, Xiaohu & Huang, Guohe & Lu, Chen & Zhou, Xiong & Li, Yongping, 2020. "Impacts of climate change on photovoltaic energy potential: A case study of China," Applied Energy, Elsevier, vol. 280(C).
    5. Jun Yin & Annalisa Molini & Amilcare Porporato, 2020. "Impacts of solar intermittency on future photovoltaic reliability," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Pérez, Juan C. & González, Albano & Díaz, Juan P. & Expósito, Francisco J. & Felipe, Jonatan, 2019. "Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands," Renewable Energy, Elsevier, vol. 133(C), pages 749-759.
    7. Zuluaga, Cristian Felipe & Avila-Diaz, Alvaro & Justino, Flavio B. & Martins, Fernando Ramos & Ceron, Wilmar L., 2022. "The climate change perspective of photovoltaic power potential in Brazil," Renewable Energy, Elsevier, vol. 193(C), pages 1019-1031.
    8. Park, Changyong & Shin, Seok-Woo & Kim, Gayoung & Cha, Dong-Hyun & Min, Seung-Ki & Lee, Donghyun & Byun, Young-Hwa & Kim, Jin-Uk, 2022. "What determines future changes in photovoltaic potential over East Asia?," Renewable Energy, Elsevier, vol. 185(C), pages 338-347.
    9. Ma, Wei Wu & Rasul, M.G. & Liu, Gang & Li, Min & Tan, Xiao Hui, 2016. "Climate change impacts on techno-economic performance of roof PV solar system in Australia," Renewable Energy, Elsevier, vol. 88(C), pages 430-438.
    10. Sonia Jerez & Isabelle Tobin & Robert Vautard & Juan Pedro Montávez & Jose María López-Romero & Françoise Thais & Blanka Bartok & Ole Bøssing Christensen & Augustin Colette & Michel Déqué & Grigory Ni, 2015. "The impact of climate change on photovoltaic power generation in Europe," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    11. Sarah Feron & Raúl R. Cordero & Alessandro Damiani & Robert B. Jackson, 2021. "Climate change extremes and photovoltaic power output," Nature Sustainability, Nature, vol. 4(3), pages 270-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    2. Yusuf Duran & Elif Yavuz & Bestami Özkaya & Yüksel Yalçin & Çağatay Variş & S. Levent Kuzu, 2024. "Investigation of the Near Future Solar Energy Changes Using a Regional Climate Model over Istanbul, Türkiye," Energies, MDPI, vol. 17(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ha, Subin & Zhou, Zixuan & Im, Eun-Soon & Lee, Young-Mi, 2023. "Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles," Renewable Energy, Elsevier, vol. 206(C), pages 324-335.
    2. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    3. Wati, Elvis & Meukam, Pierre, 2024. "Impact of the climate change on the site suitability for solar farms: Case study of Cameroon," Renewable Energy, Elsevier, vol. 225(C).
    4. Dongsheng Zheng & Dan Tong & Steven J. Davis & Yue Qin & Yang Liu & Ruochong Xu & Jin Yang & Xizhe Yan & Guannan Geng & Huizheng Che & Qiang Zhang, 2024. "Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980–2022," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Dutta, Riya & Chanda, Kironmala & Maity, Rajib, 2022. "Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis," Renewable Energy, Elsevier, vol. 188(C), pages 819-829.
    6. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    7. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    8. Kapica, Jacek & Jurasz, Jakub & Canales, Fausto A. & Bloomfield, Hannah & Guezgouz, Mohammed & De Felice, Matteo & Zbigniew, Kobus, 2024. "The potential impact of climate change on European renewable energy droughts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    10. Vázquez, Rubén & Cabos, William & Nieto-Borge, José Carlos & Gutiérrez, Claudia, 2024. "Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy," Renewable Energy, Elsevier, vol. 224(C).
    11. Isaza, Alejandra & Kay, Merlinde & Evans, Jason P. & Prasad, Abhnil & Bremner, Stephen, 2023. "Maximizing photovoltaic potential and minimizing costs in a future warmer climate: The role of atmospheric aerosols and greenhouse gas emissions," Renewable Energy, Elsevier, vol. 219(P2).
    12. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
    14. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Ibrahim, Nur Atirah & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Mustaffa, Azizul Azri & Kidam, Kamarizan, 2024. "Climate change impact on solar system in Malaysia: Techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    17. Guo, Junhong & Chen, Zhuo & Meng, Jing & Zheng, Heran & Fan, Yuri & Ji, Ling & Wang, Xiuquan & Liang, Xi, 2024. "Picturing China's photovoltaic energy future: Insights from CMIP6 climate projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Zuo, Jingping & Qian, Cuncun & Su, Bing & Ji, Hao & Xu, Yang & Peng, Zhipeng, 2024. "Evaluation of future renewable energy drought risk in China based on CMIP6," Renewable Energy, Elsevier, vol. 225(C).
    20. Guo, Jingxian & Li, Runkui & Cai, Panli & Xiao, Zhen & Fu, Haiyu & Guo, Tongze & Wang, Tianyi & Zhang, Xiaoping & Wang, Jiancheng & Song, Xianfeng, 2024. "Risk in solar energy: Spatio-temporal instability and extreme low-light events in China," Applied Energy, Elsevier, vol. 359(C).

    More about this item

    Keywords

    Climate change; Photovoltaics; Climatic models; RCP4.5; RCP8.5; Iraq;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:204:y:2023:i:c:p:338-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.