IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014763.html
   My bibliography  Save this article

Maximizing photovoltaic potential and minimizing costs in a future warmer climate: The role of atmospheric aerosols and greenhouse gas emissions

Author

Listed:
  • Isaza, Alejandra
  • Kay, Merlinde
  • Evans, Jason P.
  • Prasad, Abhnil
  • Bremner, Stephen

Abstract

Climate change in the upcoming decades will affect solar resources and impact photovoltaic (PV) energy generation, which is key for the global energy transition. The climate-change associated costs for future solar plants need to be assessed, considering different climate futures and PV technologies. Here we show PV power potential increases up to 6% (12% at the end of century) in Europe, eastern America, and south Asia, while reductions predominate in the rest of the world. While temperature and radiation changes dominate the PV changes, atmospheric aerosols also play an important role in future PV production, which has not been thoroughly evaluated before. In future high-emission scenarios, the best outcomes are achieved with thin-film modules that are more resilient to a warmer climate, highlighting the importance of improving thermal management in market-dominant silicon solar cells. In a future low-emissions scenario, the climate impacts on PV and the associated costs are the lowest, potentially saving up to 12 billion US$/year.

Suggested Citation

  • Isaza, Alejandra & Kay, Merlinde & Evans, Jason P. & Prasad, Abhnil & Bremner, Stephen, 2023. "Maximizing photovoltaic potential and minimizing costs in a future warmer climate: The role of atmospheric aerosols and greenhouse gas emissions," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014763
    DOI: 10.1016/j.renene.2023.119561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    2. Xiaoyuan Li & Denise L. Mauzerall & Mike H. Bergin, 2020. "Global reduction of solar power generation efficiency due to aerosols and panel soiling," Nature Sustainability, Nature, vol. 3(9), pages 720-727, September.
    3. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    4. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    5. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    6. Dutta, Riya & Chanda, Kironmala & Maity, Rajib, 2022. "Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis," Renewable Energy, Elsevier, vol. 188(C), pages 819-829.
    7. Miguel A. Lovino & María Josefina Pierrestegui & Omar V. Müller & Ernesto Hugo Berbery & Gabriela V. Müller & Max Pasten, 2021. "Evaluation of historical CMIP6 model simulations and future projections of temperature and precipitation in Paraguay," Climatic Change, Springer, vol. 164(3), pages 1-24, February.
    8. Zuluaga, Cristian Felipe & Avila-Diaz, Alvaro & Justino, Flavio B. & Martins, Fernando Ramos & Ceron, Wilmar L., 2022. "The climate change perspective of photovoltaic power potential in Brazil," Renewable Energy, Elsevier, vol. 193(C), pages 1019-1031.
    9. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    2. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    3. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    4. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    5. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "Quantifying the air pollution impacts on solar photovoltaic capacity factors and potential benefits of pollution control for the solar sector in China," Applied Energy, Elsevier, vol. 365(C).
    7. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Anggi Putri Kurniadi & Hasdi Aimon & Zamroni Salim & Ragimun Ragimun & Adang Sonjaya & Sigit Setiawan & Viktor Siagian & Lokot Zein Nasution & R Nurhidajat & Mutaqin Mutaqin & Joko Sabtohadi, 2024. "Analysis of Existing and Forecasting for Coal and Solar Energy Consumption on Climate Change in Asia Pacific: New Evidence for Sustainable Development Goals," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 352-359, July.
    9. Vimpari, Jussi & Junnila, Seppo, 2019. "Estimating the diffusion of rooftop PVs: A real estate economics perspective," Energy, Elsevier, vol. 172(C), pages 1087-1097.
    10. Micheli, Leonardo & Fernández, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2021. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," Energy, Elsevier, vol. 215(PA).
    11. Ha, Subin & Zhou, Zixuan & Im, Eun-Soon & Lee, Young-Mi, 2023. "Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles," Renewable Energy, Elsevier, vol. 206(C), pages 324-335.
    12. Sweerts, Bart & Longa, Francesco Dalla & van der Zwaan, Bob, 2019. "Financial de-risking to unlock Africa's renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 75-82.
    13. Zuo, Jingping & Qian, Cuncun & Su, Bing & Ji, Hao & Xu, Yang & Peng, Zhipeng, 2024. "Evaluation of future renewable energy drought risk in China based on CMIP6," Renewable Energy, Elsevier, vol. 225(C).
    14. Philip Kofi Adom, 2024. "The Socioeconomic Impact of Climate Change in Developing Countries in the Next Decades," Working Papers 681, Center for Global Development.
    15. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    16. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    17. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    18. Arnaud de La Tour & Matthieu Glachant & Yann Ménière, 2013. "What cost for photovoltaic modules in 2020? Lessons from experience curve models," Working Papers hal-00805668, HAL.
    19. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    20. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.