IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123008699.html
   My bibliography  Save this article

The potential impact of climate change on European renewable energy droughts

Author

Listed:
  • Kapica, Jacek
  • Jurasz, Jakub
  • Canales, Fausto A.
  • Bloomfield, Hannah
  • Guezgouz, Mohammed
  • De Felice, Matteo
  • Zbigniew, Kobus

Abstract

The daily, seasonal, and interannual variability of solar and wind resources is well-documented, based on evidence from multi-decadal meteorological time series. However, with the growing share of non-dispatchable renewable-based power sources (e.g., wind and solar power), the stable operation of the power system could be undermined by prolonged periods of low availability of these resources. Consequently, this may result in extremely high prices in the energy market or even a power system blackout. This study analyzes the performance of solar, wind, and solar-wind hybrid systems in Europe based on eight regional climate models, considering two possible climate change projections. The resource availability has been evaluated based on the energy drought concept. The total duration of droughts is calculated using daily capacity factors covering the years 1970–2020 (reference period) and 2048–2098 (future period), considering sub-national regions across the whole of Europe. In general, the chosen climate models show a more significant agreement in the occurrence of energy droughts for northern and southern Europe compared to its central part. Assessing the potential for renewable energy droughts is critical to maintaining secure and reliable power system operation in both the present and future climate.

Suggested Citation

  • Kapica, Jacek & Jurasz, Jakub & Canales, Fausto A. & Bloomfield, Hannah & Guezgouz, Mohammed & De Felice, Matteo & Zbigniew, Kobus, 2024. "The potential impact of climate change on European renewable energy droughts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008699
    DOI: 10.1016/j.rser.2023.114011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    3. H.C. Bloomfield & D.J. Brayshaw & A. Troccoli & C.M. Goodess & M. de Felice & L. Dubus & P.E. Bett & Yves-Marie Saint-Drenan, 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Post-Print hal-03113026, HAL.
    4. Carvalho, D. & Rocha, A. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2021. "Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Sueyoshi, Toshiyuki & Mo, Fei & Wang, Derek D., 2022. "Sustainable development of countries all over the world and the impact of renewable energy," Renewable Energy, Elsevier, vol. 184(C), pages 320-331.
    6. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    7. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    8. Yuchen Yang & Kavan Javanroodi & Vahid M. Nik, 2022. "Climate Change and Renewable Energy Generation in Europe—Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties," Energies, MDPI, vol. 15(1), pages 1-19, January.
    9. Zhao, Jing & Sinha, Avik & Inuwa, Nasiru & Wang, Yihan & Murshed, Muntasir & Abbasi, Kashif Raza, 2022. "Does structural transformation in economy impact inequality in renewable energy productivity? Implications for sustainable development," Renewable Energy, Elsevier, vol. 189(C), pages 853-864.
    10. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    11. Bloomfield, H.C. & Brayshaw, D.J. & Troccoli, A. & Goodess, C.M. & De Felice, M. & Dubus, L. & Bett, P.E. & Saint-Drenan, Y.-M., 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Renewable Energy, Elsevier, vol. 164(C), pages 1062-1075.
    12. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    13. Ohlendorf, Nils & Schill, Wolf-Peter, 2020. "Frequency and duration of low-wind-power events in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(8).
    14. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    15. Oka, Kazutaka & Mizutani, Wataru & Ashina, Shuichi, 2020. "Climate change impacts on potential solar energy production: A study case in Fukushima, Japan," Renewable Energy, Elsevier, vol. 153(C), pages 249-260.
    16. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Author Correction: Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(4), pages 362-362, April.
    17. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Dutta, Riya & Chanda, Kironmala & Maity, Rajib, 2022. "Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis," Renewable Energy, Elsevier, vol. 188(C), pages 819-829.
    19. Jerez, S. & Tobin, I. & Turco, M. & Jiménez-Guerrero, P. & Vautard, R. & Montávez, J.P., 2019. "Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe," Renewable Energy, Elsevier, vol. 139(C), pages 251-260.
    20. Zhao, Xiaohu & Huang, Guohe & Lu, Chen & Zhou, Xiong & Li, Yongping, 2020. "Impacts of climate change on photovoltaic energy potential: A case study of China," Applied Energy, Elsevier, vol. 280(C).
    21. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    22. Denholm, Paul & Brinkman, Greg & Mai, Trieu, 2018. "How low can you go? The importance of quantifying minimum generation levels for renewable integration," Energy Policy, Elsevier, vol. 115(C), pages 249-257.
    23. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    24. Allen, Sam & Otero, Noelia, 2023. "Standardised indices to monitor energy droughts," Renewable Energy, Elsevier, vol. 217(C).
    25. Parzen, Maximilian & Abdel-Khalek, Hazem & Fedotova, Ekaterina & Mahmood, Matin & Frysztacki, Martha Maria & Hampp, Johannes & Franken, Lukas & Schumm, Leon & Neumann, Fabian & Poli, Davide & Kiprakis, 2023. "PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    2. Sinha, Avik & Tiwari, Sunil & Saha, Tanaya, 2024. "Modeling the behavior of renewable energy market: Understanding the moderation of climate risk factors," Energy Economics, Elsevier, vol. 130(C).
    3. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Cheng, Qian & Liu, Pan & Xia, Jun & Ming, Bo & Cheng, Lei & Chen, Jie & Xie, Kang & Liu, Zheyuan & Li, Xiao, 2022. "Contribution of complementary operation in adapting to climate change impacts on a large-scale wind–solar–hydro system: A case study in the Yalong River Basin, China," Applied Energy, Elsevier, vol. 325(C).
    5. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    6. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    7. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    8. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    9. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    10. Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).
    11. Vázquez, Rubén & Cabos, William & Nieto-Borge, José Carlos & Gutiérrez, Claudia, 2024. "Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy," Renewable Energy, Elsevier, vol. 224(C).
    12. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    13. Oyewo, Ayobami S. & Aghahosseini, Arman & Movsessian, Maria M. & Breyer, Christian, 2024. "A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica," Renewable Energy, Elsevier, vol. 221(C).
    14. Ha, Subin & Zhou, Zixuan & Im, Eun-Soon & Lee, Young-Mi, 2023. "Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles," Renewable Energy, Elsevier, vol. 206(C), pages 324-335.
    15. Zuo, Jingping & Qian, Cuncun & Su, Bing & Ji, Hao & Xu, Yang & Peng, Zhipeng, 2024. "Evaluation of future renewable energy drought risk in China based on CMIP6," Renewable Energy, Elsevier, vol. 225(C).
    16. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    17. Zhang, Zeyu & Liang, Yushi & Xue, Xinyue & Li, Yan & Zhang, Mulan & Li, Yiran & Ji, Xiaodong, 2024. "China's future wind energy considering air density during climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    19. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    20. Cao, Yan & Cheng, Sheng & Li, Xinran, 2024. "Co-movements between heterogeneous crude oil and food markets: Does temperature change really matter?," Research in International Business and Finance, Elsevier, vol. 67(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.