IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924021512.html
   My bibliography  Save this article

Assessing the environmental and economic viability of floating PV-powered green hydrogen: A case study on inland ferry operations in Türkiye

Author

Listed:
  • Guven, Denizhan

Abstract

This paper conducts a comprehensive analysis of the environmental impacts and costs associated with a floating photovoltaic (FPV)-powered green hydrogen production system for a ferry line in Türkiye, utilizing life cycle assessment (LCA) and life cycle cost assessment (LCCA) methods. The methodology involves regridding daily data from 13 Global Climate Models (GCMs) to a consistent 1° × 1° grid, comparing this data with ERA5 datasets using various statistical methods, and identifying the top four GCMs. These models are then used to forecast ambient temperature, wind speed, and solar radiation for 2023–2052. Based on these forecasts, the FPV system's component sizes are determined. The LCA, based on the GREET 2022 database, reveals that green hydrogen is the most environmentally friendly option, reducing global warming potential (GWP) by 77.5 % compared to marine diesel oil (MDO 0.1 % S), with more than 62 % of GWP for the hydrogen-powered ferry attributed to PV production. LCCA results indicate that, without subsidies, green hydrogen is not economically feasible for the selected inland ferry line. Carbon taxes are insufficient to bridge cost differences, highlighting the need for financial incentives. Reducing corporate tax to 10 % is identified as the most effective incentive, and the Production Tax Credit (PTC) option maximizes internal rates of return for green hydrogen producers. This study provides valuable insights for sustainable energy choices in maritime transport, emphasizing the importance of both environmental and economic considerations.

Suggested Citation

  • Guven, Denizhan, 2025. "Assessing the environmental and economic viability of floating PV-powered green hydrogen: A case study on inland ferry operations in Türkiye," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924021512
    DOI: 10.1016/j.apenergy.2024.124768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
    2. Jangwon Suh & Yonghae Jang & Yosoon Choi, 2019. "Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    3. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    4. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    5. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    7. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    8. Haibin Wang & Myo Zin Aung & Xue Xu & Evangelos Boulougouris, 2023. "Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    9. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    10. Dutta, Riya & Chanda, Kironmala & Maity, Rajib, 2022. "Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis," Renewable Energy, Elsevier, vol. 188(C), pages 819-829.
    11. Marvin, Dario & Nespoli, Lorenzo & Strepparava, Davide & Medici, Vasco, 2022. "A data-driven approach to forecasting ground-level ozone concentration," International Journal of Forecasting, Elsevier, vol. 38(3), pages 970-987.
    12. Cromratie Clemons, Sáde K. & Salloum, Coleman R. & Herdegen, Kyle G. & Kamens, Richard M. & Gheewala, Shabbir H., 2021. "Life cycle assessment of a floating photovoltaic system and feasibility for application in Thailand," Renewable Energy, Elsevier, vol. 168(C), pages 448-462.
    13. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    15. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    16. Sonia Jerez & Isabelle Tobin & Robert Vautard & Juan Pedro Montávez & Jose María López-Romero & Françoise Thais & Blanka Bartok & Ole Bøssing Christensen & Augustin Colette & Michel Déqué & Grigory Ni, 2015. "The impact of climate change on photovoltaic power generation in Europe," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    17. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    18. Piotr W. Saługa & Krzysztof Zamasz & Zdzisława Dacko-Pikiewicz & Katarzyna Szczepańska-Woszczyna & Marcin Malec, 2021. "Risk-Adjusted Discount Rate and Its Components for Onshore Wind Farms at the Feasibility Stage," Energies, MDPI, vol. 14(20), pages 1-12, October.
    19. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Shoaib & Li, Tie & Zhou, Xin Yi & Yi, Ping & Chen, Run, 2025. "Quantifying the environmental footprints of biofuels for sustainable passenger ship operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    2. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    3. Yan, Xinping & He, Yapeng & Fan, Ailong, 2023. "Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Evers, V.H.M. & Kirkels, A.F. & Godjevac, M., 2023. "Carbon footprint of hydrogen-powered inland shipping: Impacts and hotspots," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    7. Fan, Ailong & Xiong, Yuqi & Yang, Liu & Zhang, Haiying & He, Yapeng, 2023. "Carbon footprint model and low–carbon pathway of inland shipping based on micro–macro analysis," Energy, Elsevier, vol. 263(PE).
    8. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    10. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    11. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    14. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    15. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    17. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    18. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    19. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    20. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924021512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.