IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp445-461.html
   My bibliography  Save this article

Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate

Author

Listed:
  • Kim, Seung-Jun
  • Yang, Hyeon-Mo
  • Park, Jungwan
  • Kim, Jin-Hyuk

Abstract

The pump–turbine unit used in pumped-storage power generation plays a role in backing up and adjusting the power system in a flexible power generation facility, providing stability in response to renewable energy power grids with intermittent power generation. Owing to changes in the operating conditions of flexible power generation facilities, pump–turbine units have been operated continuously in off-design conditions. At the high flow rates in off-design conditions, undesirable flow with vortex rope is caused in the draft tube, which leads to operating system instability. Meanwhile, when operating at high flow rates in the turbine mode of the pump–turbine unit, the Thoma number must be considered for relatively stable operations due to cavitation phenomena. Thus, to expand stable operating ranges through the understanding of high flow rates, unsteady internal flow and pressure phenomena were investigated depending on the Thoma number in the turbine mode of the pump–turbine model through analyses with laboratory-scale pump–turbine model experiments and unsteady-state numerical analyses via systematic quantitative and qualitative comparisons. There was no difference in flow characteristics at the runner and draft tube areas based on the Thoma number at the best efficiency point. Nevertheless, torch-shaped visible vortex ropes developed and differences in flow characteristics at the draft tube appeared based on Thoma number under high flow rates.

Suggested Citation

  • Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:445-461
    DOI: 10.1016/j.renene.2022.08.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Yu, An & Wang, Yongshuai & Tang, Qinghong & Lv, Ruirui & Yang, Zhongpo, 2021. "Investigation of the vortex evolution and hydraulic excitation in a pump-turbine operating at different conditions," Renewable Energy, Elsevier, vol. 171(C), pages 462-478.
    3. Wanfeng, Hu & Zhengwei, Wang & Honggang, Fan, 2021. "Grid synchronization of variable speed pump-turbine units in turbine mode," Renewable Energy, Elsevier, vol. 173(C), pages 625-638.
    4. Jun-Won Suh & Seung-Jun Kim & Hyeon-Mo Yang & Moo-Sung Kim & Won-Gu Joo & Jungwan Park & Jin-Hyuk Kim & Young-Seok Choi, 2021. "A Comparative Study of the Scale Effect on the S-Shaped Characteristics of a Pump-Turbine Unit," Energies, MDPI, vol. 14(3), pages 1-29, January.
    5. Suh, Jun-Won & Yang, Hyeon-Mo & Kim, Jin-Hyuk & Joo, Won-Gu & Park, Jungwan & Choi, Young-Seok, 2021. "Unstable S-shaped characteristics of a pump-turbine unit in a lab-scale model," Renewable Energy, Elsevier, vol. 171(C), pages 1395-1417.
    6. Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
    7. Lu, Jie & Qian, Zhongdong & Lee, Young-Ho, 2021. "Numerical investigation of unsteady characteristics of a pump turbine under runaway condition," Renewable Energy, Elsevier, vol. 169(C), pages 905-924.
    8. Sotoudeh, Nahale & Maddahian, Reza & Cervantes, Michel J., 2020. "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube," Renewable Energy, Elsevier, vol. 151(C), pages 238-254.
    9. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.
    10. Cheng, Huan & Zhou, Lingjiu & Liang, Quanwei & Guan, Ziwu & Liu, Demin & Wang, Zhaoning & Kang, Wenzhe, 2020. "A method of evaluating the vortex rope strength in draft tube of Francis turbine," Renewable Energy, Elsevier, vol. 152(C), pages 770-780.
    11. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    2. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Seung-Jun & Suh, Jun-Won & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Internal flow phenomena of a Pump–Turbine model in turbine mode with different Thoma numbers," Renewable Energy, Elsevier, vol. 184(C), pages 510-525.
    2. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    3. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    4. Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    5. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    6. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    7. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    8. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    9. Salehi, Saeed & Nilsson, Håkan & Lillberg, Eric & Edh, Nicolas, 2021. "An in-depth numerical analysis of transient flow field in a Francis turbine during shutdown," Renewable Energy, Elsevier, vol. 179(C), pages 2322-2347.
    10. Wang, Huan & Li, Wenfeng & Hou, Yaochun & Wu, Peng & Huang, Bin & Wu, Kelin & Wu, Dazhuan, 2023. "Recognition of the developing vortex rope in Francis turbine draft tube based on PSO-CS2," Renewable Energy, Elsevier, vol. 217(C).
    11. Zhumei Luo & Cong Nie & Shunli Lv & Tao Guo & Suoming Gao, 2022. "The Effect of J-Groove on Vortex Suppression and Energy Dissipation in a Draft Tube of Francis Turbine," Energies, MDPI, vol. 15(5), pages 1-20, February.
    12. Lei Wang & Jiayi Cui & Lingfeng Shu & Denghui Jiang & Chun Xiang & Linwei Li & Peijian Zhou, 2022. "Research on the Vortex Rope Control Techniques in Draft Tube of Francis Turbines," Energies, MDPI, vol. 15(24), pages 1-27, December.
    13. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).
    14. Lu, Zhaoheng & Tao, Ran & Yao, Zhifeng & Liu, Weichao & Xiao, Ruofu, 2022. "Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation," Renewable Energy, Elsevier, vol. 197(C), pages 268-287.
    15. Jonathan Fahlbeck & Håkan Nilsson & Saeed Salehi, 2021. "Flow Characteristics of Preliminary Shutdown and Startup Sequences for a Model Counter-Rotating Pump-Turbine," Energies, MDPI, vol. 14(12), pages 1-17, June.
    16. Sergey Skripkin & Daniil Suslov & Ivan Plokhikh & Mikhail Tsoy & Evgeny Gorelikov & Ivan Litvinov, 2023. "Data-Driven Prediction of Unsteady Vortex Phenomena in a Conical Diffuser," Energies, MDPI, vol. 16(5), pages 1-20, February.
    17. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    18. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    19. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    20. Raul-Alexandru Szakal & Alexandru Doman & Sebastian Muntean, 2021. "Influence of the Reshaped Elbow on the Unsteady Pressure Field in a Simplified Geometry of the Draft Tube," Energies, MDPI, vol. 14(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:445-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.