IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v166y2020icp147-162.html
   My bibliography  Save this article

Investigation of a Francis turbine during speed variation: Inception of cavitation

Author

Listed:
  • Trivedi, Chirag
  • Iliev, Igor
  • Dahlhaug, Ole Gunnar
  • Markov, Zoran
  • Engstrom, Fredrik
  • Lysaker, Henning

Abstract

Variable-speed operation of a hydro turbine is considered as an alternative option to meet fluctuating energy demand as it allows high-ramping rate. Cavitation can be a limiting factor to utilize the variable-speed technology at full potential in a hydro power plant. This work investigates the cavitation characteristics and unsteady pressure fluctuations as turbine ramps up, to meet the energy demand. The investigated Francis turbine consists of 15 blades and 15 splitters, and the reference diameter is 0.349 m. Numerical model of complete turbine is prepared and hexahedral mesh is created. Rayleigh Plesset algorithm is activated for cavitation modelling. Available experimental data of model acceptance test are used to prescribe boundary conditions, and to validate the numerical results at distinct points. Transient behaviour of the cavitation is studied, and the results are quite interesting. At certain time instants, the cavitation effect is extremely predominant, and as a result of cavitation bubble bursts, the amplitudes of pressure fluctuations are significantly high.

Suggested Citation

  • Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
  • Handle: RePEc:eee:renene:v:166:y:2020:i:c:p:147-162
    DOI: 10.1016/j.renene.2020.11.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iliev, Igor & Trivedi, Chirag & Dahlhaug, Ole Gunnar, 2019. "Variable-speed operation of Francis turbines: A review of the perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 109-121.
    2. Liu, Xin & Luo, Yongyao & Wang, Zhengwei, 2016. "A review on fatigue damage mechanism in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1-14.
    3. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2018. "Experimental study of a Francis turbine under variable-speed and discharge conditions," Renewable Energy, Elsevier, vol. 119(C), pages 447-458.
    4. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2019. "Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications," Renewable Energy, Elsevier, vol. 133(C), pages 325-342.
    5. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2017. "Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation," Renewable Energy, Elsevier, vol. 113(C), pages 397-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    2. Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
    3. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    4. Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    5. Filip Stojkovski & Marija Lazarevikj & Zoran Markov & Igor Iliev & Ole Gunnar Dahlhaug, 2021. "Constraints of Parametrically Defined Guide Vanes for a High-Head Francis Turbine," Energies, MDPI, vol. 14(9), pages 1-13, May.
    6. Shahzer, Mohammad Abu & Kim, Jin-Hyuk, 2024. "Investigation of role of fins in a Francis turbine model's cavitation-induced instabilities under design and off-design conditions," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    3. Sotoudeh, Nahale & Maddahian, Reza & Cervantes, Michel J., 2020. "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube," Renewable Energy, Elsevier, vol. 151(C), pages 238-254.
    4. Bosioc, Alin Ilie & Tănasă, Constantin, 2020. "Experimental study of swirling flow from conical diffusers using the water jet control method," Renewable Energy, Elsevier, vol. 152(C), pages 385-398.
    5. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2018. "Experimental study of a Francis turbine under variable-speed and discharge conditions," Renewable Energy, Elsevier, vol. 119(C), pages 447-458.
    6. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    7. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    8. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    9. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    10. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    11. Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
    12. Ming Zhang & David Valentin & Carme Valero & Mònica Egusquiza & Weiqiang Zhao, 2018. "Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack," Energies, MDPI, vol. 11(7), pages 1-18, June.
    13. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    14. Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza & Carme Valero & Eduard Egusquiza, 2021. "Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines," Energies, MDPI, vol. 14(20), pages 1-16, October.
    15. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    16. Krzemianowski, Zbigniew & Steller, Janusz, 2021. "High specific speed Francis turbine for small hydro purposes - Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience," Renewable Energy, Elsevier, vol. 169(C), pages 1210-1228.
    17. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    18. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    20. Li, Huanhuan & Chen, Diyi & Arzaghi, Ehsan & Abbassi, Rouzbeh & Xu, Beibei & Patelli, Edoardo & Tolo, Silvia, 2018. "Safety assessment of hydro-generating units using experiments and grey-entropy correlation analysis," Energy, Elsevier, vol. 165(PA), pages 222-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:166:y:2020:i:c:p:147-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.