IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp268-287.html
   My bibliography  Save this article

Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation

Author

Listed:
  • Lu, Zhaoheng
  • Tao, Ran
  • Yao, Zhifeng
  • Liu, Weichao
  • Xiao, Ruofu

Abstract

Pumped storage unit is a typical energy storage system in electric power grid system. Flow energy dissipation (FED) is a key factor affecting energy utilization efficiency. Guide vane has an important influence on the hydraulic performance and system stability. This study compares the FED difference of two typical guide vanes in turbine mode and pump mode based on Computational Fluid Dynamics (CFD) and entropy production method. The results show that at the same head, the flow rates in energy storage and power generation are different. In pump mode, FED concentrates in runner, guide vane, stay vane and volute. FED concentrates in runner and draft tube in turbine mode. The sources of FED in pump mode and turbine mode are different, including flow separation, jet wake, wall loss, vortex rope and back-flow. Guide vane with oval leading edge can better enhance the flow rate compared with that with sharp leading edge in turbine mode, which decreases FED at small flow rate condition by improving the matching of blade profiles and flow direction. This paper provides a reference for improving the performance of pump turbine through design.

Suggested Citation

  • Lu, Zhaoheng & Tao, Ran & Yao, Zhifeng & Liu, Weichao & Xiao, Ruofu, 2022. "Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation," Renewable Energy, Elsevier, vol. 197(C), pages 268-287.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:268-287
    DOI: 10.1016/j.renene.2022.07.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    2. Yu, An & Wang, Yongshuai & Tang, Qinghong & Lv, Ruirui & Yang, Zhongpo, 2021. "Investigation of the vortex evolution and hydraulic excitation in a pump-turbine operating at different conditions," Renewable Energy, Elsevier, vol. 171(C), pages 462-478.
    3. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    4. Guidong Li & Yang Wang & Puyu Cao & Jinfeng Zhang & Jieyun Mao, 2018. "Effects of the Splitter Blade on the Performance of a Pump-Turbine in Pump Mode," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, October.
    5. Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
    6. Koirala, Ravi & Neopane, Hari Prasad & Zhu, Baoshan & Thapa, Bhola, 2019. "Effect of sediment erosion on flow around guide vanes of Francis turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1022-1027.
    7. Qi, Bing & Zhang, Desheng & Geng, Linlin & Zhao, Ruijie & van Esch, Bart P.M., 2022. "Numerical and experimental investigations on inflow loss in the energy recovery turbines with back-curved and front-curved impeller based on the entropy generation theory," Energy, Elsevier, vol. 239(PE).
    8. Lai, Xi-De & Liang, Quan-Wei & Ye, Dao-Xing & Chen, Xiao-Ming & Xia, Mi-Mi, 2019. "Experimental investigation of flows inside draft tube of a high-head pump-turbine," Renewable Energy, Elsevier, vol. 133(C), pages 731-742.
    9. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    10. Filip Stojkovski & Marija Lazarevikj & Zoran Markov & Igor Iliev & Ole Gunnar Dahlhaug, 2021. "Constraints of Parametrically Defined Guide Vanes for a High-Head Francis Turbine," Energies, MDPI, vol. 14(9), pages 1-13, May.
    11. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    12. Tao, Ran & Zhou, Xuezhi & Xu, Buchao & Wang, Zhengwei, 2019. "Numerical investigation of the flow regime and cavitation in the vanes of reversible pump-turbine during pump mode's starting up," Renewable Energy, Elsevier, vol. 141(C), pages 9-19.
    13. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    2. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    3. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    4. Gong, Wenbin & Lei, Zhao & Nie, Shunpeng & Liu, Gaowen & Lin, Aqiang & Feng, Qing & Wang, Zhiwu, 2023. "A novel combined model for energy consumption performance prediction in the secondary air system of gas turbine engines based on flow resistance network," Energy, Elsevier, vol. 280(C).
    5. Song, Xijie & Luo, Yongyao & Wang, Zhengwei, 2024. "Mechanism of the influence of sand on the energy dissipation inside the hydraulic turbine under sediment erosion condition," Energy, Elsevier, vol. 294(C).
    6. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    2. Chen, Xiaoping & Zhang, Zhiguo & Huang, Jianmin & Zhou, Xiaojie & Zhu, Zuchao, 2024. "Numerical investigation on energy change field in a centrifugal pump as turbine under different flow rates," Renewable Energy, Elsevier, vol. 230(C).
    3. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    4. Yang, Gang & Shen, Xi & Pan, Qiang & Geng, Linlin & Shi, Lei & Xu, Bin & Zhang, Desheng, 2024. "Investigation on passive suppression method of hump characteristics in a large vertical volute centrifugal pump: Using combined diffuser vane structure," Energy, Elsevier, vol. 304(C).
    5. Wang, Tao & Yu, He & Xiang, Ru & Chen, XiaoMing & Zhang, Xiang, 2023. "Performance and unsteady flow characteristic of forward-curved impeller with different blade inlet swept angles in a pump as turbine," Energy, Elsevier, vol. 282(C).
    6. Qi, Bing & Bai, Xiaobang & Li, Yibin & Wang, Xiaohui & Zhang, Xiaoze & Zhang, Desheng, 2024. "Research on the influence mechanism of internal flow characteristics on energy conversion in radial energy recovery turbines under multiple conditions," Energy, Elsevier, vol. 296(C).
    7. He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
    8. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    9. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    10. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    11. Tong Lin & Jian Li & Baofei Xie & Jianrong Zhang & Zuchao Zhu & Hui Yang & Xiaoming Wen, 2022. "Vortex-Pressure Fluctuation Interaction in the Outlet Duct of Centrifugal Pump as Turbines (PATs)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    12. Wang, Tao & Liu, Yunqi & Dong, Yuancheng & Xiang, Ru & Bai, Yuxing, 2024. "The influence of the middle bending shape of the blade on the performance of a pump as turbine," Energy, Elsevier, vol. 295(C).
    13. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    14. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    15. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    16. Li, Puxi & Xiao, Ruofu & Tao, Ran, 2022. "Study of vortex rope based on flow energy dissipation and vortex identification," Renewable Energy, Elsevier, vol. 198(C), pages 1065-1081.
    17. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    18. Kim, Seung-Jun & Suh, Jun-Won & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Internal flow phenomena of a Pump–Turbine model in turbine mode with different Thoma numbers," Renewable Energy, Elsevier, vol. 184(C), pages 510-525.
    19. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    20. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:268-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.