IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp1395-1417.html
   My bibliography  Save this article

Unstable S-shaped characteristics of a pump-turbine unit in a lab-scale model

Author

Listed:
  • Suh, Jun-Won
  • Yang, Hyeon-Mo
  • Kim, Jin-Hyuk
  • Joo, Won-Gu
  • Park, Jungwan
  • Choi, Young-Seok

Abstract

Unusual flow characteristics such as reverse flow, rotating stalls, flow recirculation, and stationary vortexes can induce high dynamic forces and torque variations on the entire system, creating a positive slope in the discharge-head curve. To avoid these problems, the present study investigates the hydrodynamic characteristics of a lab-scale model of a Francis type pump-turbine unit in the transition region. To verify the simulation, its results were compared with those of a laboratory-scale experiment performed over various operating ranges. The differences between the experimental and numerical speed, discharge, and torque factors were compared. The numerical analysis was well-matched the experimental tendencies in the overall operating and transition regions. The reliability of the simulations was within 4%. The unsteady RANS equations in the SAS–SST model were discretized for a detailed analysis of the pressure and internal flow characteristics. Under the runaway condition and low-discharge conditions, the frequency spectra of the pressure fluctuations were remarkable at low-frequency related to the rotating stall and blade passing frequency. These results represent a rotating stall with a frequency propagation of approximately 60% of the rotational speed of the runner. In case of the internal flow field, some blade loading distributions developed a positive shape while others developed a negative shape under the runaway condition. Although a rotating stall formed under the low-discharge condition, the form under this condition differed from that developed under runaway conditions, owing to backflow and the single stall cell.

Suggested Citation

  • Suh, Jun-Won & Yang, Hyeon-Mo & Kim, Jin-Hyuk & Joo, Won-Gu & Park, Jungwan & Choi, Young-Seok, 2021. "Unstable S-shaped characteristics of a pump-turbine unit in a lab-scale model," Renewable Energy, Elsevier, vol. 171(C), pages 1395-1417.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1395-1417
    DOI: 10.1016/j.renene.2021.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suh, Jun-Won & Kim, Seung-Jun & Kim, Jin-Hyuk & Joo, Won-Gu & Park, Jungwan & Choi, Young-Seok, 2020. "Effect of interface condition on the hydraulic characteristics of a pump-turbine at various guide vane opening conditions in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 986-1004.
    2. Deyou Li & Hongjie Wang & Jinxia Chen & Torbjørn K. Nielsen & Daqing Qin & Xianzhu Wei, 2016. "Hysteresis Characteristic in the Hump Region of a Pump-Turbine Model," Energies, MDPI, vol. 9(8), pages 1-18, August.
    3. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    4. Zuo, Zhigang & Liu, Shuhong & Sun, Yuekun & Wu, Yulin, 2015. "Pressure fluctuations in the vaneless space of High-head pump-turbines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 965-974.
    5. Punys, Petras & Baublys, Raimundas & Kasiulis, Egidijus & Vaisvila, Andrius & Pelikan, Bernhard & Steller, Janusz, 2013. "Assessment of renewable electricity generation by pumped storage power plants in EU Member States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 190-200.
    6. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Fahlbeck & Håkan Nilsson & Saeed Salehi, 2021. "Flow Characteristics of Preliminary Shutdown and Startup Sequences for a Model Counter-Rotating Pump-Turbine," Energies, MDPI, vol. 14(12), pages 1-17, June.
    2. Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
    3. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    4. Kim, Seung-Jun & Suh, Jun-Won & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Internal flow phenomena of a Pump–Turbine model in turbine mode with different Thoma numbers," Renewable Energy, Elsevier, vol. 184(C), pages 510-525.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    2. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    3. Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
    4. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    5. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    6. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    7. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    8. Lu, Guocheng & Zuo, Zhigang & Sun, Yuekun & Liu, Demin & Tsujimoto, Yoshinobu & Liu, Shuhong, 2017. "Experimental evidence of cavitation influences on the positive slope on the pump performance curve of a low specific speed model pump-turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1539-1550.
    9. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    10. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    11. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    12. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    13. Yang, Zhiyan & Cheng, Yongguang & Xia, Linsheng & Meng, Wanwan & Liu, Ke & Zhang, Xiaoxi, 2020. "Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip," Renewable Energy, Elsevier, vol. 152(C), pages 1149-1159.
    14. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    15. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    16. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    17. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    18. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    19. Zhu, Baoshan & Wang, Xuhe & Tan, Lei & Zhou, Dongyue & Zhao, Yue & Cao, Shuliang, 2015. "Optimization design of a reversible pump–turbine runner with high efficiency and stability," Renewable Energy, Elsevier, vol. 81(C), pages 366-376.
    20. Rodríguez, Rafael & Díaz, María B., 2009. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method," Renewable Energy, Elsevier, vol. 34(7), pages 1716-1725.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1395-1417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.