IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp625-638.html
   My bibliography  Save this article

Grid synchronization of variable speed pump-turbine units in turbine mode

Author

Listed:
  • Wanfeng, Hu
  • Zhengwei, Wang
  • Honggang, Fan

Abstract

The S-shaped characteristics of the pump-turbine may cause instability and thus leads to difficulties in grid synchronization. This paper develops a complete model for a pumped storage power plant and studies the start-up and grid synchronization procedure of two 300 MW variable speed units at no load in turbine mode. Based on the grid-voltage-oriented vector control method, the stator voltage of the doubly-fed induction machine is controlled to meet the grid connection requirements. Compared with the fixed speed units, the simulation results show that for a pump-turbine with typical S-shaped characteristics, the fixed speed unit cannot meet the grid connection requirements due to the unstable unit speed. Whereas, the variable speed unit can quickly reach synchronization with the grid voltage. For a pump-turbine without typical S-shaped characteristics, the synchronous unit can meet the grid connection requirements, but it takes a longer time and the stator voltage is not stable enough, while the variable speed unit is 11 times faster and more stable. The effects of PI parameters on the synchronization process of a variable speed unit are also studied. The results show that with suitable PI control parameters, the synchronization process can be accelerated without large overshoot of the rotor power.

Suggested Citation

  • Wanfeng, Hu & Zhengwei, Wang & Honggang, Fan, 2021. "Grid synchronization of variable speed pump-turbine units in turbine mode," Renewable Energy, Elsevier, vol. 173(C), pages 625-638.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:625-638
    DOI: 10.1016/j.renene.2021.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    2. Schmidt, J. & Kemmetmüller, W. & Kugi, A., 2017. "Modeling and static optimization of a variable speed pumped storage power plant," Renewable Energy, Elsevier, vol. 111(C), pages 38-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    2. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    2. Gao, Chunyang & Yu, Xiangyang & Nan, Haipeng & Men, Chuangshe & Zhao, Peiyu & Cai, Qingsen & Fu, Jianing, 2021. "Stability and dynamic analysis of doubly-fed variable speed pump turbine governing system based on Hopf bifurcation theory," Renewable Energy, Elsevier, vol. 175(C), pages 568-579.
    3. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    4. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    5. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    6. Menéndez, Javier & Fernández-Oro, Jesús M. & Galdo, Mónica & Loredo, Jorge, 2019. "Pumped-storage hydropower plants with underground reservoir: Influence of air pressure on the efficiency of the Francis turbine and energy production," Renewable Energy, Elsevier, vol. 143(C), pages 1427-1438.
    7. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    8. Jianzhong Zhou & Zhigao Zhao & Chu Zhang & Chaoshun Li & Yanhe Xu, 2017. "A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation," Energies, MDPI, vol. 11(1), pages 1-24, December.
    9. Wang, Wen-Quan & Yu, Zhi-Feng & Yan, Yan & Wei, Xin-Yu, 2024. "Numerical investigation on vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions," Energy, Elsevier, vol. 302(C).
    10. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    11. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    12. Yao, Jun & Pei, Jinxin & Xu, Depeng & Liu, Ruikuo & Wang, Xuewei & Wang, Caisheng & Li, Yu, 2018. "Coordinated control of a hybrid wind farm with DFIG-based and PMSG-based wind power generation systems under asymmetrical grid faults," Renewable Energy, Elsevier, vol. 127(C), pages 613-629.
    13. Yuzhe Chen & Feng Wu & Linjun Shi & Yang Li & Peng Qi & Xu Guo, 2024. "Identification of Sub-Synchronous Oscillation Mode Based on HO-VMD and SVD-Regularized TLS-Prony Methods," Energies, MDPI, vol. 17(20), pages 1-17, October.
    14. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    15. Florian Julian Lugauer & Josef Kainz & Matthias Gaderer, 2021. "Techno-Economic Efficiency Analysis of Various Operating Strategies for Micro-Hydro Storage Using a Pump as a Turbine," Energies, MDPI, vol. 14(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:625-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.