IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015731.html
   My bibliography  Save this article

Numerical investigation on vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions

Author

Listed:
  • Wang, Wen-Quan
  • Yu, Zhi-Feng
  • Yan, Yan
  • Wei, Xin-Yu

Abstract

In this paper, the vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions are numerically investigated. First, the rules of fixed-speed and adjustable-speed operations are introduced in detail, aiming at operating limits extension. Second, comparative analysis on vortex rope is conducted, with emphasis on vortex rope volume, tail water excitation and spontaneous power swing. Finally, inter-blade vortex has been analyzed and successfully demonstrated, and its induced high amplitude pressure fluctuation characteristic is explored. It is found that at deep part load, vortex rope volume and power swing coefficient of adjustable-speed operation decreased by 69 % and 61 % respectively. The amplitude of Rheingans frequency decreased by 17 %, while the amplitude of blade passing frequency increased by 83 %. After decreasing runner speed, inter-blade vortex is stranded at blade suction surface leading-edge. In addition to low-frequency disturbance, pressure fluctuation shows high-frequency wide-band characteristics. It is concluded that adjustable-speed operation has beneficial effects on improvement of cavity cavitation and energy stability. As for hydraulic stability, the Rotor-Stator Interaction effect cannot be ignored. After changing runner speed, the inter-blade vortex becomes more serious, which could provoke low-cycle and high-cycle fatigue of the blades.

Suggested Citation

  • Wang, Wen-Quan & Yu, Zhi-Feng & Yan, Yan & Wei, Xin-Yu, 2024. "Numerical investigation on vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015731
    DOI: 10.1016/j.energy.2024.131800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iliev, Igor & Trivedi, Chirag & Dahlhaug, Ole Gunnar, 2019. "Variable-speed operation of Francis turbines: A review of the perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 109-121.
    2. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    3. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    4. Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
    5. Jafarzadeh Juposhti, Hessan & Maddahian, Reza & Cervantes, Michel J., 2021. "Optimization of axial water injection to mitigate the Rotating Vortex Rope in a Francis turbine," Renewable Energy, Elsevier, vol. 175(C), pages 214-231.
    6. Zhang, Fan & Appiah, Desmond & Zhang, Jinfeng & Yuan, Shouqi & Osman, Majeed Koranteng & Chen, Ke, 2018. "Transient flow characterization in energy conversion of a side channel pump under different blade suction angles," Energy, Elsevier, vol. 161(C), pages 635-648.
    7. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    8. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    9. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    10. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    11. Sha Li & Zezhou Cao & Kuangqing Hu & Diyi Chen, 2023. "Performance Assessment for Primary Frequency Regulation of Variable-Speed Pumped Storage Plant in Isolated Power Systems," Energies, MDPI, vol. 16(3), pages 1-16, January.
    12. Sotoudeh, Nahale & Maddahian, Reza & Cervantes, Michel J., 2020. "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube," Renewable Energy, Elsevier, vol. 151(C), pages 238-254.
    13. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    14. Cheng, Huan & Zhou, Lingjiu & Liang, Quanwei & Guan, Ziwu & Liu, Demin & Wang, Zhaoning & Kang, Wenzhe, 2020. "A method of evaluating the vortex rope strength in draft tube of Francis turbine," Renewable Energy, Elsevier, vol. 152(C), pages 770-780.
    15. Zhou, Xing & Shi, Changzheng & Miyagawa, Kazuyoshi & Wu, Hegao, 2021. "Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 606-617.
    16. Sun, Longgang & Guo, Pengcheng & Luo, Xingqi, 2020. "Numerical investigation on inter-blade cavitation vortex in a Franics turbine," Renewable Energy, Elsevier, vol. 158(C), pages 64-74.
    17. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2018. "Experimental study of a Francis turbine under variable-speed and discharge conditions," Renewable Energy, Elsevier, vol. 119(C), pages 447-458.
    18. Yu, Zhi-Feng & Wang, Wen-Quan & Yan, Yan & Liu, Xing-Shun, 2021. "Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method," Renewable Energy, Elsevier, vol. 169(C), pages 982-999.
    19. Schmidt, J. & Kemmetmüller, W. & Kugi, A., 2017. "Modeling and static optimization of a variable speed pumped storage power plant," Renewable Energy, Elsevier, vol. 111(C), pages 38-51.
    20. Cheng, Huan & Zhou, Lingjiu & Liang, Quanwei & Guan, Ziwu & Liu, Demin & Wang, Zhaoning & Kang, Wenzhe, 2020. "The investigation of runner blade channel vortices in two different Francis turbine models," Renewable Energy, Elsevier, vol. 156(C), pages 201-212.
    21. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2017. "Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation," Renewable Energy, Elsevier, vol. 113(C), pages 397-410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    2. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).
    3. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    4. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    5. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    6. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    7. He Wang & Zhijie Ma, 2021. "Regulation Characteristics and Load Optimization of Pump-Turbine in Variable-Speed Operation," Energies, MDPI, vol. 14(24), pages 1-21, December.
    8. Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
    9. Shahzer, Mohammad Abu & Kim, Jin-Hyuk, 2024. "Investigation of role of fins in a Francis turbine model's cavitation-induced instabilities under design and off-design conditions," Energy, Elsevier, vol. 292(C).
    10. Zhumei Luo & Cong Nie & Shunli Lv & Tao Guo & Suoming Gao, 2022. "The Effect of J-Groove on Vortex Suppression and Energy Dissipation in a Draft Tube of Francis Turbine," Energies, MDPI, vol. 15(5), pages 1-20, February.
    11. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    12. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    13. Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    14. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    15. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    16. Salehi, Saeed & Nilsson, Håkan, 2022. "Effects of uncertainties in positioning of PIV plane on validation of CFD results of a high-head Francis turbine model," Renewable Energy, Elsevier, vol. 193(C), pages 57-75.
    17. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    18. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    19. Lianda Duan & Dekuan Wang & Guiping Wang & Changlin Han & Weijun Zhang & Xiaobo Liu & Cong Wang & Zheng Che & Chang Chen, 2022. "Piecewise Causality Study between Power Load and Vibration in Hydro-Turbine Generator Unit for a Low-Carbon Era," Energies, MDPI, vol. 15(3), pages 1-13, February.
    20. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.