IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v136y2021ics1364032120306420.html
   My bibliography  Save this article

Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective

Author

Listed:
  • Kumar, Sandeep
  • Cervantes, Michel J.
  • Gandhi, Bhupendra K.

Abstract

Hydropower is a clean and renewable source of energy which is widely used to generate electric power and stabilize the power grid. It can respond quickly to any change in demand with the flexibility to operate over a wide range of time scales. At steady-state part-load operation, a flow structure known as precessing vortex rope develops in the draft tube of singly regulated reaction turbines, which causes large pressure pulsations. The vortex rope develops pressure pulsations in the draft tube cone, structural vibrations, power swings, pulsative pressure recovery, which are the main concerns in the hydropower sector. Studies were carried out to understand the inception as well as mitigation of these detrimental effects due to the rotating vortex rope (RVR) development. The primary focus of the present study is to comprehensively review the experimental investigations carried out to study the formation of RVR, its effects on turbine performance, and the methodologies developed to mitigate its impact.

Suggested Citation

  • Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:rensus:v:136:y:2021:i:c:s1364032120306420
    DOI: 10.1016/j.rser.2020.110354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xin & Luo, Yongyao & Wang, Zhengwei, 2016. "A review on fatigue damage mechanism in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1-14.
    2. Goyal, Rahul & Gandhi, B.K. & Cervantes, Michel J., 2018. "PIV measurements in Francis turbine – A review and application to transient operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2976-2991.
    3. Sotoudeh, Nahale & Maddahian, Reza & Cervantes, Michel J., 2020. "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube," Renewable Energy, Elsevier, vol. 151(C), pages 238-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Puxi & Xiao, Ruofu & Tao, Ran, 2022. "Study of vortex rope based on flow energy dissipation and vortex identification," Renewable Energy, Elsevier, vol. 198(C), pages 1065-1081.
    2. Lei Wang & Jiayi Cui & Lingfeng Shu & Denghui Jiang & Chun Xiang & Linwei Li & Peijian Zhou, 2022. "Research on the Vortex Rope Control Techniques in Draft Tube of Francis Turbines," Energies, MDPI, vol. 15(24), pages 1-27, December.
    3. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    4. Lei, Shuaihao & Cheng, Li & Yang, Weixing & Xu, Wentao & Yu, Lei & Luo, Can & Jiao, Weixuan & Shen, Jiantao, 2024. "Dynamic multiscale pressure fluctuation features extraction of mixed-flow pump as turbine (PAT) and flow state recognition of the outlet passage using variational mode decomposition and refined compos," Energy, Elsevier, vol. 305(C).
    5. Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
    6. Sergey Skripkin & Daniil Suslov & Ivan Plokhikh & Mikhail Tsoy & Evgeny Gorelikov & Ivan Litvinov, 2023. "Data-Driven Prediction of Unsteady Vortex Phenomena in a Conical Diffuser," Energies, MDPI, vol. 16(5), pages 1-20, February.
    7. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    8. Jesline Joy & Mehrdad Raisee & Michel J. Cervantes, 2022. "Hydraulic Performance of a Francis Turbine with a Variable Draft Tube Guide Vane System to Mitigate Pressure Pulsations," Energies, MDPI, vol. 15(18), pages 1-20, September.
    9. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    10. Joy, Jesline & Raisee, Mehrdad & Cervantes, Michel J., 2023. "Experimental investigation of an adjustable guide vane system in a Francis turbine draft tube at part load operation," Renewable Energy, Elsevier, vol. 210(C), pages 737-750.
    11. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    12. Raul-Alexandru Szakal & Alexandru Doman & Sebastian Muntean, 2021. "Influence of the Reshaped Elbow on the Unsteady Pressure Field in a Simplified Geometry of the Draft Tube," Energies, MDPI, vol. 14(5), pages 1-21, March.
    13. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.
    14. Sergey Shtork & Daniil Suslov & Sergey Skripkin & Ivan Litvinov & Evgeny Gorelikov, 2023. "An Overview of Active Control Techniques for Vortex Rope Mitigation in Hydraulic Turbines," Energies, MDPI, vol. 16(13), pages 1-31, July.
    15. Salehi, Saeed & Nilsson, Håkan & Lillberg, Eric & Edh, Nicolas, 2021. "An in-depth numerical analysis of transient flow field in a Francis turbine during shutdown," Renewable Energy, Elsevier, vol. 179(C), pages 2322-2347.
    16. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    17. Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    2. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    3. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Ming Zhang & David Valentin & Carme Valero & Mònica Egusquiza & Weiqiang Zhao, 2018. "Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack," Energies, MDPI, vol. 11(7), pages 1-18, June.
    5. Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza & Carme Valero & Eduard Egusquiza, 2021. "Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines," Energies, MDPI, vol. 14(20), pages 1-16, October.
    6. Lai, Xide & Chen, Xiaoming & Liang, Quanwei & Ye, Daoxing & Gou, Qiuqin & Wang, Rongtao & Yan, Yi, 2023. "Experimental and numerical investigation of vortex flows and pressure fluctuations in a high-head pump-turbine," Renewable Energy, Elsevier, vol. 211(C), pages 236-247.
    7. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    8. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    9. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    10. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    11. Salehi, Saeed & Nilsson, Håkan, 2022. "Effects of uncertainties in positioning of PIV plane on validation of CFD results of a high-head Francis turbine model," Renewable Energy, Elsevier, vol. 193(C), pages 57-75.
    12. Valentín, David & Presas, Alexandre & Valero, Carme & Egusquiza, Mònica & Egusquiza, Eduard & Gomes, Joao & Avellan, François, 2020. "Transposition of the mechanical behavior from model to prototype of Francis turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1011-1023.
    13. Ivan Litvinov & Daniil Suslov & Evgeny Gorelikov & Sergey Shtork, 2021. "Experimental Study of Transient Flow Regimes in a Model Hydroturbine Draft Tube," Energies, MDPI, vol. 14(5), pages 1-13, February.
    14. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
    15. Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Diana Maria Bucur & Michel Jose Cervantes, 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve," Energies, MDPI, vol. 15(11), pages 1-24, June.
    16. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2017. "Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation," Renewable Energy, Elsevier, vol. 113(C), pages 397-410.
    17. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    18. Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
    19. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    20. Sotoudeh, Nahale & Maddahian, Reza & Cervantes, Michel J., 2020. "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube," Renewable Energy, Elsevier, vol. 151(C), pages 238-254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:136:y:2021:i:c:s1364032120306420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.