IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9280-d996318.html
   My bibliography  Save this article

Research on the Vortex Rope Control Techniques in Draft Tube of Francis Turbines

Author

Listed:
  • Lei Wang

    (Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China)

  • Jiayi Cui

    (School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
    College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China)

  • Lingfeng Shu

    (Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Denghui Jiang

    (Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China)

  • Chun Xiang

    (School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Linwei Li

    (Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China)

  • Peijian Zhou

    (College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China)

Abstract

Francis turbines are most widely used in hydropower due to their characteristics which include a fast response and wide time-scale operation. The vortex rope inside Francis turbines is a common flow phenomenon, which always causes strong vibration, pressure pulsations, fatigue load, and even serious failure of the components. Vortex suppression methods can effectively change the velocity and pressure distribution of the flow field in the draft tube, reduce the volume of vortex rope and the amplitude of pressure pulsation, inhibit the development of cavitation erosion, and improve the operation stability of the hydro turbine. However, the vortex suppression method is not suitable for all working conditions, and the vortex suppression effect is also different. There are still many problems with how to analyze the vortex suppression effect and practicability of the turbine from multi-dimensions. It is of great significance to analyze the vortex suppression techniques and their practicability in hydraulic turbines from various aspects. The primary focus of the present study is to analyze the hazards of vortex rope in draft tubes and summarize the methods of suppressing vortex rope and pressure pulsation. This review article provides a basis for controlling the vortex rope in the draft tube, which can help the designers choose the suitable control method to mitigate it. Future research directions are also briefly discussed.

Suggested Citation

  • Lei Wang & Jiayi Cui & Lingfeng Shu & Denghui Jiang & Chun Xiang & Linwei Li & Peijian Zhou, 2022. "Research on the Vortex Rope Control Techniques in Draft Tube of Francis Turbines," Energies, MDPI, vol. 15(24), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9280-:d:996318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maosen Xu & Guorui Zeng & Dazhuan Wu & Jiegang Mou & Jianfang Zhao & Shuihua Zheng & Bin Huang & Yun Ren, 2022. "Structural Optimization of Jet Fish Pump Design Based on a Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 15(11), pages 1-16, June.
    2. Jafarzadeh Juposhti, Hessan & Maddahian, Reza & Cervantes, Michel J., 2021. "Optimization of axial water injection to mitigate the Rotating Vortex Rope in a Francis turbine," Renewable Energy, Elsevier, vol. 175(C), pages 214-231.
    3. Capik, Mehmet & Osman Yılmaz, Ali & Cavusoglu, İbrahim, 2012. "Hydropower for sustainable energy development in Turkey: The small hydropower case of the Eastern Black Sea Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6160-6172.
    4. Cheng, Huan & Zhou, Lingjiu & Liang, Quanwei & Guan, Ziwu & Liu, Demin & Wang, Zhaoning & Kang, Wenzhe, 2020. "A method of evaluating the vortex rope strength in draft tube of Francis turbine," Renewable Energy, Elsevier, vol. 152(C), pages 770-780.
    5. KC, Anup & Lee, Young Ho & Thapa, Bhola, 2016. "CFD study on prediction of vortex shedding in draft tube of Francis turbine and vortex control techniques," Renewable Energy, Elsevier, vol. 86(C), pages 1406-1421.
    6. Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Laouari, Ahmed & Ghenaiet, Adel, 2021. "Investigation of steady and unsteady cavitating flows through a small Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 841-861.
    8. Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
    9. Huiyan Zhang & Daohang Zou & Xuelong Yang & Jiegang Mou & Qiwei Zhou & Maosen Xu, 2022. "Liquid–Gas Jet Pump: A Review," Energies, MDPI, vol. 15(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.
    2. Sergey Shtork & Daniil Suslov & Sergey Skripkin & Ivan Litvinov & Evgeny Gorelikov, 2023. "An Overview of Active Control Techniques for Vortex Rope Mitigation in Hydraulic Turbines," Energies, MDPI, vol. 16(13), pages 1-31, July.
    3. Hao Wang & Peijian Zhou & Ting Chen & Jiegang Mou & Jiayi Cui & Huiming Zhang, 2023. "Optimization of Liquid−Liquid Mixing in a Novel Mixer Based on Hybrid SVR-DE Model," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    2. Zhumei Luo & Cong Nie & Shunli Lv & Tao Guo & Suoming Gao, 2022. "The Effect of J-Groove on Vortex Suppression and Energy Dissipation in a Draft Tube of Francis Turbine," Energies, MDPI, vol. 15(5), pages 1-20, February.
    3. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).
    4. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    5. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    6. Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    7. Sergey Shtork & Daniil Suslov & Sergey Skripkin & Ivan Litvinov & Evgeny Gorelikov, 2023. "An Overview of Active Control Techniques for Vortex Rope Mitigation in Hydraulic Turbines," Energies, MDPI, vol. 16(13), pages 1-31, July.
    8. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    9. Shahzer, Mohammad Abu & Kim, Jin-Hyuk, 2024. "Investigation of role of fins in a Francis turbine model's cavitation-induced instabilities under design and off-design conditions," Energy, Elsevier, vol. 292(C).
    10. Li, Puxi & Xiao, Ruofu & Tao, Ran, 2022. "Study of vortex rope based on flow energy dissipation and vortex identification," Renewable Energy, Elsevier, vol. 198(C), pages 1065-1081.
    11. Wang, Huan & Li, Wenfeng & Hou, Yaochun & Wu, Peng & Huang, Bin & Wu, Kelin & Wu, Dazhuan, 2023. "Recognition of the developing vortex rope in Francis turbine draft tube based on PSO-CS2," Renewable Energy, Elsevier, vol. 217(C).
    12. Tao Guo & Lihui Xu & Wenquan Wang, 2021. "Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes," Energies, MDPI, vol. 14(22), pages 1-21, November.
    13. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    14. Wenqiang Zhou & Peijian Zhou & Chun Xiang & Yang Wang & Jiegang Mou & Jiayi Cui, 2023. "A Review of Bionic Structures in Control of Aerodynamic Noise of Centrifugal Fans," Energies, MDPI, vol. 16(11), pages 1-24, May.
    15. Sergey Skripkin & Daniil Suslov & Ivan Plokhikh & Mikhail Tsoy & Evgeny Gorelikov & Ivan Litvinov, 2023. "Data-Driven Prediction of Unsteady Vortex Phenomena in a Conical Diffuser," Energies, MDPI, vol. 16(5), pages 1-20, February.
    16. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    17. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    18. Raul-Alexandru Szakal & Alexandru Doman & Sebastian Muntean, 2021. "Influence of the Reshaped Elbow on the Unsteady Pressure Field in a Simplified Geometry of the Draft Tube," Energies, MDPI, vol. 14(5), pages 1-21, March.
    19. Hao Wang & Peijian Zhou & Ting Chen & Jiegang Mou & Jiayi Cui & Huiming Zhang, 2023. "Optimization of Liquid−Liquid Mixing in a Novel Mixer Based on Hybrid SVR-DE Model," Energies, MDPI, vol. 16(4), pages 1-17, February.
    20. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9280-:d:996318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.