IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027543.html
   My bibliography  Save this article

Demand response with PCM-based pipe-embedded wall in commercial buildings: Combined passive and active energy storage in envelopes

Author

Listed:
  • Chen, Yuxin
  • Sun, Yongjun
  • Yang, Jinling
  • Tan, Jiaqi
  • Liu, Yang
  • Gao, Dian-ce

Abstract

Demand response (DR) allows Heating Ventilation and Air Conditioning (HVAC) systems to reduce or shift their electricity consumption during peak periods through the global temperature adjustment strategy. Phase change materials (PCM) based walls are the effective energy storage facilities, storing energy in the pre-cooling period and releasing energy during DR event. However, the traditional configuration of PCM-based wall only allows the passive heat transfer between the walls and the indoor air, requiring a long time to complete the phase change process in the pre-cooling period. This paper presents a novel application of PCM-based pipe-embedded wall (PCM-based PE-wall) in building demand response, which combining active and passive heat transfer mechanism to enhance energy storage rates. The effect of PCM-based PE-walls on demand response is evaluated under two different pre-cooling modes: active pre-cooling only (Envelope-2A) and combined passive and active pre-cooling (Envelope-2B). The results show that the implementation of the PCM-based PE-wall can significantly enhance the overall heat transfer rate of the cooling storage in envelopes and thus improving the demand response performance. Compared to traditional PCM walls (Envelope-1), PCM-based PE-walls (Envelope-2B) could cause additional peak demand reductions of 15.78 % and additional energy reductions of 10.18 % during DR events.

Suggested Citation

  • Chen, Yuxin & Sun, Yongjun & Yang, Jinling & Tan, Jiaqi & Liu, Yang & Gao, Dian-ce, 2024. "Demand response with PCM-based pipe-embedded wall in commercial buildings: Combined passive and active energy storage in envelopes," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027543
    DOI: 10.1016/j.energy.2024.132980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.