IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp111-128.html
   My bibliography  Save this article

Study on the energy performance enhancement of a new PCMs integrated hybrid system with the active cooling and hybrid ventilations

Author

Listed:
  • Zhou, Yuekuan
  • Zheng, Siqian
  • Zhang, Guoqiang

Abstract

A new hybrid system for the energy cascade utilization has been proposed, integrating the hybrid ventilations, the active PV cooling, the radiative cooling together with the PCMs’ storages. A mathematical modelling together with systematic energy performance evaluation criteria has been presented to disclose the heat transfer mechanism of the hybrid system involved with different energy forms, diversified energy conversions and thermal energy storages. Multivariable parametrical analysis has been conducted and technical solutions were thereafter proposed in terms of maximizing the energy performance with the robust design and operating parameters. From our results, the interior radiant cooling system results in a stable indoor temperature with considerable energy saving potentials. The new hybrid system shows an overwhelming energy performance over the traditional system. Moreover, the polynominal fitting method is more accurate and robust than the traditional linear fitting method in terms of acquiring critical knowledge about the design and operating parameters. Research results for different scenarios with different geometrical and operational parameters have been presented to demonstrate and verify the effectiveness of the proposed technique.

Suggested Citation

  • Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2019. "Study on the energy performance enhancement of a new PCMs integrated hybrid system with the active cooling and hybrid ventilations," Energy, Elsevier, vol. 179(C), pages 111-128.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:111-128
    DOI: 10.1016/j.energy.2019.04.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    2. Solanki, S.C. & Dubey, Swapnil & Tiwari, Arvind, 2009. "Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors," Applied Energy, Elsevier, vol. 86(11), pages 2421-2428, November.
    3. Chandel, S.S. & Naik, M. Nagaraju & Chandel, Rahul, 2017. "Review of performance studies of direct coupled photovoltaic water pumping systems and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 163-175.
    4. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    5. Tonui, J.K. & Tripanagnostopoulos, Y., 2007. "Improved PV/T solar collectors with heat extraction by forced or natural air circulation," Renewable Energy, Elsevier, vol. 32(4), pages 623-637.
    6. Kaiser, A.S. & Zamora, B. & Mazón, R. & García, J.R. & Vera, F., 2014. "Experimental study of cooling BIPV modules by forced convection in the air channel," Applied Energy, Elsevier, vol. 135(C), pages 88-97.
    7. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    8. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    9. Wang, Chenguang & Gong, Guangcai & Su, Huan & Wah Yu, Chuck, 2015. "Efficacy of integrated photovoltaics-air source heat pump systems for application in Central-south China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1190-1197.
    10. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    11. Mehmood, Umer & Al-Ahmed, Amir & Al-Sulaiman, Fahad A. & Malik, M. Irfan & Shehzad, Farrukh & Khan, Anwar Ul Haq, 2017. "Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 946-959.
    12. Smith, Christopher J. & Forster, Piers M. & Crook, Rolf, 2014. "Global analysis of photovoltaic energy output enhanced by phase change material cooling," Applied Energy, Elsevier, vol. 126(C), pages 21-28.
    13. Xiaohong Liu & Yuekuan Zhou & Chun-Qing Li & Yaolin Lin & Wei Yang & Guoqiang Zhang, 2019. "Optimization of a New Phase Change Material Integrated Photovoltaic/Thermal Panel with The Active Cooling Technique Using Taguchi Method," Energies, MDPI, vol. 12(6), pages 1-22, March.
    14. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Tang & Zhengxuan Liu & Yuekuan Zhou & Di Qin & Guoqiang Zhang, 2020. "Study on a Dynamic Numerical Model of an Underground Air Tunnel System for Cooling Applications—Experimental Validation and Multidimensional Parametrical Analysis," Energies, MDPI, vol. 13(5), pages 1-20, March.
    2. Li, Ao & Duan, Shuangping & Han, Rubing & Wang, Chaoyu, 2022. "Investigation on the dynamic thermal storage/release of the integrated PCM solar wall embedded with an evaporator," Renewable Energy, Elsevier, vol. 200(C), pages 1506-1516.
    3. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    4. Zheng, Xinyao & Zhou, Yuekuan, 2024. "Dynamic heat-transfer mechanism and performance analysis of an integrated Trombe wall with radiant cooling for natural cooling energy harvesting and air-conditioning," Energy, Elsevier, vol. 288(C).
    5. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
    6. Ding, Yu & Klemeš, Jiří Jaromír & Zhao, Pengbo & Zeng, Min & Wang, Qiuwang, 2022. "Numerical study on 2-stage phase change heat sink for cooling of photovoltaic panel," Energy, Elsevier, vol. 249(C).
    7. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    8. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    9. Liaqat Hussain & Muhammad Mahabat Khan & Manzar Masud & Fawad Ahmed & Zabdur Rehman & Łukasz Amanowicz & Krzysztof Rajski, 2021. "Heat Transfer Augmentation through Different Jet Impingement Techniques: A State-of-the-Art Review," Energies, MDPI, vol. 14(20), pages 1-40, October.
    10. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    11. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    12. Safari, Vahid & Kamkari, Babak & Hooman, Kamel & Khodadadi, J.M., 2022. "Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units," Energy, Elsevier, vol. 255(C).
    13. Zhou, Yuekuan, 2022. "A regression learner-based approach for battery cycling ageing prediction―advances in energy management strategy and techno-economic analysis," Energy, Elsevier, vol. 256(C).
    14. Ljungdahl, V. & Taha, K. & Dallaire, J. & Kieseritzky, E. & Pawelz, F. & Jradi, M. & Veje, C., 2021. "Phase change material based ventilation module - Numerical study and experimental validation of serial design," Energy, Elsevier, vol. 234(C).
    15. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    18. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five clima," Energy, Elsevier, vol. 192(C).
    19. Gao, Xiangkui & Xiao, Yimin & Gao, penghui & Zhang, Zujing & Sun, Meng, 2022. "Experimental study of the effect of high humidity on the phase change plate thermal storage under natural convection," Energy, Elsevier, vol. 256(C).
    20. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    2. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    3. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    4. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    5. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    6. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five clima," Energy, Elsevier, vol. 192(C).
    7. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    8. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    9. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    10. Choubineh, Negin & Jannesari, Hamid & Kasaeian, Alibakhsh, 2019. "Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 103-111.
    11. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    12. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    13. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    14. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    15. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    16. Chen, Haiping & Zhang, Heng & Li, Mingjie & Liu, Haowen & Huang, Jiguang, 2018. "Experimental investigation of a novel LCPV/T system with micro-channel heat pipe array," Renewable Energy, Elsevier, vol. 115(C), pages 773-782.
    17. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    18. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    19. Lv, Song & Yang, Jiahao & Ren, Juwen & Zhang, Bolong & Lai, Yin & Chang, Zhihao, 2023. "Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials," Energy, Elsevier, vol. 263(PC).
    20. Dehra, Himanshu, 2017. "An investigation on energy performance assessment of a photovoltaic solar wall under buoyancy-induced and fan-assisted ventilation system," Applied Energy, Elsevier, vol. 191(C), pages 55-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:111-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.