Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118386
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aksoy, Laçine, 2011. "Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions," Applied Energy, Elsevier, vol. 88(12), pages 4713-4718.
- Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock," Energy, Elsevier, vol. 162(C), pages 408-420.
- Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
- Qian, Kun & Shen, Xiang & Wang, Yanxin & Gao, Qiang & Ding, Hongwei, 2015. "In-situ transesterification of Jatropha oil over an efficient solid alkali using low leaching component supported on industrial silica gel," Energy, Elsevier, vol. 93(P2), pages 2251-2257.
- M.A. Waheed & O.D. Samuel & B.O. Bolaji & O.U. Dairo, 2014. "Optimization of Nigerian Restaurant Waste Cooking Biodiesel Reaction Parameters using Response Surface Methodology," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 3(4), pages 21-33, October.
- George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zeeshan, Muhammad & Ghazanfar, Sadia & Tariq, Muhammad & Asif, Hafiz Muhammad & Hussain, Ajaz & Usman, Muhamamd & Khan, Muhammad Ali & Mahmood, Khalid & Sirajuddin, Muhammad & Imran, Muhammad, 2023. "Synthesis of novel ternary NiO–CdO-Nd2O3 nanocomposite for biodiesel production," Renewable Energy, Elsevier, vol. 210(C), pages 800-809.
- Li, Hui & Wang, Yongbo & Ma, Xiaoling & Guo, Min & Li, Yan & Li, Guoning & Cui, Ping & Zhou, Shoujun & Yu, Mingzhi, 2022. "Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 970-977.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
- Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
- Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2019. "Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil," Renewable Energy, Elsevier, vol. 143(C), pages 77-90.
- Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
- Panchal, Tirth M. & Patel, Ankit & Chauhan, D.D. & Thomas, Merlin & Patel, Jigar V., 2017. "A methodological review on bio-lubricants from vegetable oil based resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 65-70.
- Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.
- Kocakulak, Tolga & Babagiray, Mustafa & Nacak, Çağatay & Safieddin Ardebili, Seyed Mohammad & Calam, Alper & Solmaz, Hamit, 2022. "Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends," Renewable Energy, Elsevier, vol. 182(C), pages 827-841.
- Ming-Chien Hsiao & Shuhn-Shyurng Hou & Jui-Yang Kuo & Pei-Hsuan Hsieh, 2018. "Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions," Energies, MDPI, vol. 11(10), pages 1-12, October.
- Atelge, M.R., 2022. "Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1-15.
- Hwai Chyuan Ong & M. Mofijur & A.S. Silitonga & D. Gumilang & Fitranto Kusumo & T.M.I. Mahlia, 2020. "Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils," Energies, MDPI, vol. 13(6), pages 1-14, March.
- Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
- Aleksandr Ketov & Natalia Sliusar & Anna Tsybina & Iurii Ketov & Sergei Chudinov & Marina Krasnovskikh & Vladimir Bosnic, 2022. "Plant Biomass Conversion to Vehicle Liquid Fuel as a Path to Sustainability," Resources, MDPI, vol. 11(8), pages 1-11, August.
- Umar, Yusuf & Velasco, Orlando & Abdelaziz, Omar Y. & Aboelazayem, Omar & Gadalla, Mamdouh A. & Hulteberg, Christian P. & Saha, Basudeb, 2022. "A renewable lignin-derived bio-oil for boosting the oxidation stability of biodiesel," Renewable Energy, Elsevier, vol. 182(C), pages 867-878.
- Omar Aboelazayem & Mamdouh Gadalla & Basudeb Saha, 2022. "Comprehensive Optimisation of Biodiesel Production Conditions via Supercritical Methanolysis of Waste Cooking Oil," Energies, MDPI, vol. 15(10), pages 1-22, May.
- Fassinou, Wanignon Ferdinand, 2012. "Higher heating value (HHV) of vegetable oils, fats and biodiesels evaluation based on their pure fatty acids' HHV," Energy, Elsevier, vol. 45(1), pages 798-805.
- Mohammed Kamil & Khalid Ramadan & Abdul Ghani Olabi & Chaouki Ghenai & Abrar Inayat & Mugdad H. Rajab, 2019. "Desert Palm Date Seeds as a Biodiesel Feedstock: Extraction, Characterization, and Engine Testing," Energies, MDPI, vol. 12(16), pages 1-20, August.
- Sophie Fon Sing & Andreas Isdepsky & Michael Borowitzka & Navid Moheimani, 2013. "Production of biofuels from microalgae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 47-72, January.
- Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
- S, Prabakaran & T, Mohanraj & A, Arumugam, 2021. "Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst," Renewable Energy, Elsevier, vol. 180(C), pages 353-371.
More about this item
Keywords
Black mustard; Optimization; Fuel properties; Polynomial regression model; Alkali catalysts; Short chain alcohols;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220314936. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.