IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221014420.html
   My bibliography  Save this article

Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis

Author

Listed:
  • Luo, Laipeng
  • Zhang, Zhiyi
  • Li, Chong
  • Nishu,
  • He, Fang
  • Zhang, Xingguang
  • Cai, Junmeng

Abstract

The determination of the kinetic triplet including the activation energy, frequency factor, and kinetic mechanism function is a key objective in kinetic analysis of solid-state reactions like lignocellulosic biomass pyrolysis. The master plots method is usually used to determine the kinetic mechanism function once the activation energies as a function of conversion are estimated from an isoconversional method. A critical study of the master plots method has been performed by analyzing theoretically simulated processes with varying activation energies and frequency factors. The accuracy of the resulting kinetic mechanism function calculated by the master plots method is strongly dependent on the variation degree of the frequency factor with conversion and the conversion dependency of activation energy from isoconversional methods. The utilization of the master plots method without considering the variation degree of the frequency factor with conversion may result in misestimating kinetic mechanism function.

Suggested Citation

  • Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014420
    DOI: 10.1016/j.energy.2021.121194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varma, Anil Kumar & Lal, Navneeta & Rathore, Ashwani Kumar & Katiyar, Rajesh & Thakur, Lokendra Singh & Shankar, Ravi & Mondal, Prasenjit, 2021. "Thermal, kinetic and thermodynamic study for co-pyrolysis of pine needles and styrofoam using thermogravimetric analysis," Energy, Elsevier, vol. 218(C).
    2. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    3. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    5. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    6. Sobek, Szymon & Werle, Sebastian, 2020. "Isoconversional determination of the apparent reaction models governing pyrolysis of wood, straw and sewage sludge, with an approach to rate modelling," Renewable Energy, Elsevier, vol. 161(C), pages 972-987.
    7. Qing Yang & Hewen Zhou & Pietro Bartocci & Francesco Fantozzi & Ondřej Mašek & Foster A. Agblevor & Zhiyu Wei & Haiping Yang & Hanping Chen & Xi Lu & Guoqian Chen & Chuguang Zheng & Chris P. Nielsen &, 2021. "Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Li, Mi & Jiang, Lin & He, Jia-Jia & Sun, Jin-Hua, 2019. "Kinetic triplet determination and modified mechanism function construction for thermo-oxidative degradation of waste polyurethane foam using conventional methods and distributed activation energy mode," Energy, Elsevier, vol. 175(C), pages 1-13.
    9. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    10. Moustakas, K. & Parmaxidou, P. & Vakalis, S., 2020. "Anaerobic digestion for energy production from agricultural biomass waste in Greece: Capacity assessment for the region of Thessaly," Energy, Elsevier, vol. 191(C).
    11. Siddiqi, Hammad & Bal, Manisha & Kumari, Usha & Meikap, B.C., 2020. "In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential," Renewable Energy, Elsevier, vol. 148(C), pages 756-771.
    12. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Pin & Li, Chong & Xu, Dong & Yellezuome, Dominic & Wang, Jiong & Cai, Junmeng, 2023. "Insight into kinetics and thermodynamics of distillers’ dried grains with solubles (DDGS) combustion using an approach simultaneously determining frequency factor and reaction model," Renewable Energy, Elsevier, vol. 219(P2).
    2. Sahu, Parmanand & Gangil, Sandip, 2023. "Stepped pyrolysis: A novel approach for enhanced adsorbency and carbon in Pigeon pea stalk char," Renewable Energy, Elsevier, vol. 219(P2).
    3. Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
    4. Li, Xiangjie & He, Fang & Cai, Junmeng & Behrendt, Frank & Dieguez-Alonso, Alba & Schliermann, Thomas, 2022. "Oxidation kinetics of maize stover char at low temperature based on surface area and temperature correction," Energy, Elsevier, vol. 241(C).
    5. Zhi Xu & Zhaohui Guo & Huimin Xie & Yulian Hu, 2022. "Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    6. Zhang, Yu & Jiang, Haifeng & Li, Yuhang & Jia, Wei & Song, Meng & Hong, Wenpeng, 2024. "Efficient production of furans by CO2-assisted pyrolysis of cellulose with carbon-supported Ni/Co catalysts," Energy, Elsevier, vol. 294(C).
    7. Bernd Gamisch & Lea Huber & Matthias Gaderer & Belal Dawoud, 2022. "On the Kinetic Mechanisms of the Reduction and Oxidation Reactions of Iron Oxide/Iron Pellets for a Hydrogen Storage Process," Energies, MDPI, vol. 15(21), pages 1-29, November.
    8. Nishu, & Tang, Songbiao & Mei, Wenjie & Yang, Juntao & Wang, Zhongming & Yang, Gaixiu, 2024. "Effect of anaerobic digestion pretreatment on pyrolysis of distillers’ grain: Product distribution, kinetics and thermodynamics analysis," Renewable Energy, Elsevier, vol. 221(C).
    9. Sahoo, Abhisek & Saini, Komal & Negi, Shweta & Kumar, Jitendra & Pant, Kamal K. & Bhaskar, Thallada, 2022. "Inspecting the bioenergy potential of noxious Vachellia nilotica weed via pyrolysis: Thermo-kinetic study, neural network modeling and response surface optimization," Renewable Energy, Elsevier, vol. 185(C), pages 386-402.
    10. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    2. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    3. Kumar, Rakesh & Dubey, Pratik & Mondal, Monoj Kumar, 2024. "Analysis of kinetics, mechanism, thermodynamic properties and product distribution for pyrolysis of Ni–Fe impregnated coconut husk," Renewable Energy, Elsevier, vol. 222(C).
    4. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    5. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    6. Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
    7. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    8. Gorugantu SriBala & Hans‐Heinrich Carstensen & Kevin M. Van Geem & Guy B. Marin, 2019. "Measuring biomass fast pyrolysis kinetics: State of the art," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(2), March.
    9. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    10. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    11. Vikraman, V. Karuppasamy & Boopathi, G. & Kumar, D. Praveen & Mythili, R. & Subramanian, P., 2021. "Non-isothermal pyrolytic kinetics of milk dust powder using thermogravimetric analysis," Renewable Energy, Elsevier, vol. 180(C), pages 838-849.
    12. Zhang, Pin & Li, Chong & Xu, Dong & Yellezuome, Dominic & Wang, Jiong & Cai, Junmeng, 2023. "Insight into kinetics and thermodynamics of distillers’ dried grains with solubles (DDGS) combustion using an approach simultaneously determining frequency factor and reaction model," Renewable Energy, Elsevier, vol. 219(P2).
    13. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Chen, Xuejiao & Wang, Hong & Yang, Rui & Lin, Wei & Qi, Zhiyong & Zhang, Dongdong, 2024. "Effect of severe torrefaction by superheated steam on pinewood pyrolysis kinetics and pyrolytic oil compounds," Renewable Energy, Elsevier, vol. 227(C).
    15. Rego, Filipe & Soares Dias, Ana P. & Casquilho, Miguel & Rosa, Fátima C. & Rodrigues, Abel, 2020. "Pyrolysis kinetics of short rotation coppice poplar biomass," Energy, Elsevier, vol. 207(C).
    16. Emmanuel Galiwango & Ali H. Al-Marzuoqi & Abbas A. Khaleel & Mahdi M. Abu-Omar, 2020. "Investigation of Non-Isothermal Kinetics and Thermodynamic Parameters for the Pyrolysis of Different Date Palm Parts," Energies, MDPI, vol. 13(24), pages 1-19, December.
    17. Cheng, Wei & Zhu, Youjian & Shao, Jing’ai & Zhang, Wennan & Wu, Guihao & Jiang, Hao & Hu, Junhao & Huang, Zhen & Yang, Haiping & Chen, Hanping, 2021. "Mitigation of ultrafine particulate matter emission from agricultural biomass pellet combustion by the additive of phosphoric acid modified kaolin," Renewable Energy, Elsevier, vol. 172(C), pages 177-187.
    18. Kieu Anh Nguyen & Walter Chen & Bor-Shiun Lin & Uma Seeboonruang, 2020. "Using Machine Learning-Based Algorithms to Analyze Erosion Rates of a Watershed in Northern Taiwan," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    19. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    20. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.