Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.04.044
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.
- Kongkasawan, Jinjuta & Nam, Hyungseok & Capareda, Sergio C., 2016. "Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects," Energy, Elsevier, vol. 113(C), pages 631-642.
- Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
- Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
- Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
- Raja, S. Antony & Kennedy, Z. Robert & Pillai, B.C. & Lee, C. Lindon Robert, 2010. "Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor," Energy, Elsevier, vol. 35(7), pages 2819-2823.
- Garg, Rahul & Anand, Neeru & Kumar, Dinesh, 2016. "Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization," Renewable Energy, Elsevier, vol. 96(PA), pages 167-171.
- Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Guoxuan & Wang, Shuai & Zhao, Jiangang & Qi, Huaqing & Ma, Zhaoyuan & Cui, Peizhe & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong, 2020. "Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming," Energy, Elsevier, vol. 199(C).
- Esin Apaydın Varol & Ülker Mutlu, 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin," Energies, MDPI, vol. 16(9), pages 1-19, April.
- Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Angelos-Ikaros Altantzis & Nikolaos-Christos Kallistridis & George Stavropoulos & Anastasia Zabaniotou, 2022. "Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: an Experimental Study," Circular Economy and Sustainability, Springer, vol. 2(1), pages 351-382, March.
- Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
- Ma, Liyang & Goldfarb, Jillian L. & Ma, Qiulin, 2022. "Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable approach to rice husk conversion to biofuels," Renewable Energy, Elsevier, vol. 198(C), pages 712-722.
- Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.
- Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Shi, Xiaogang & Ronsse, Frederik & Nachenius, Robert & Pieters, Jan G., 2019. "3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production," Renewable Energy, Elsevier, vol. 143(C), pages 1477-1487.
- Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
- Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
- Zalazar-Garcia, Daniela & Fernandez, Anabel & Rodriguez-Ortiz, Leandro & Torres, Erick & Reyes-Urrutia, Andrés & Echegaray, Marcelo & Rodriguez, Rosa & Mazza, Germán, 2022. "Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software," Renewable Energy, Elsevier, vol. 201(P1), pages 60-71.
- Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
- Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Julia Karaeva & Svetlana Timofeeva & Marat Gilfanov & Marina Slobozhaninova & Olga Sidorkina & Ekaterina Luchkina & Vladimir Panchenko & Vadim Bolshev, 2023. "Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
- Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Samoraj, Mateusz & Dmytryk, Agnieszka & Tuhy, Łukasz & Zdunek, Anna & Rusek, Piotr & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2023. "Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production," Energy, Elsevier, vol. 262(PA).
- Ahmed, Gaffer & Kishore, Nanda, 2023. "Fuel phase extraction from pyrolytic liquid of Azadirachta indica biomass followed by subsequent characterization of pyrolysis products," Renewable Energy, Elsevier, vol. 219(P1).
- Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
- Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
More about this item
Keywords
Areca nut husk; Pyrolytic oil; Bed thickness; Product composition; Sawdust;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:549-558. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.