IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp428-438.html
   My bibliography  Save this article

Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production

Author

Listed:
  • Gomes, Michelle Garcia
  • Paranhos, Aline Gomes de Oliveira
  • Camargos, Adonai Bruneli
  • Baêta, Bruno Eduardo Lobo
  • Baffi, Milla Alves
  • Gurgel, Leandro Vinícius Alves
  • Pasquini, Daniel

Abstract

This study evaluated the pretreatment of sugarcane bagasse (SCB) with dilute citric acid solution for biogas production. The black liquor (BL) from pretreatment and residual solid fraction (RSF) obtained after enzymatic hydrolysis were used as substrates for the biogas production. After saccharifications of the pretreated solid fractions performed with Cellic® CTec 3 cocktail, the highest concentration of total reducing sugars (TRS) was in the range of 10.7–184.8 g L−1 and the sugar yields were in the range of 3.5–88.8%. For BL, the contents of glucose, xylose, and arabinose were in the range of 1.9–8.9 g L−1, 4.0–24.7 g L−1, and 0.2–5.4 g L−1, respectively. Biogas production from BL and RSF resulted, respectively, in maximum values of 563.6 and 57.8 NmL gCOD−1, indicating the feasibility of using dilute citric acid pretreatment coupled to biogas production in biorefineries. Brief energy and economic assessment were carried out considering the energy balance (thermal energy generated by burning biogas - thermal energy spent in the pretreatment), as well as revenue from a possible sale of electricity generated in a combined heat and power system.

Suggested Citation

  • Gomes, Michelle Garcia & Paranhos, Aline Gomes de Oliveira & Camargos, Adonai Bruneli & Baêta, Bruno Eduardo Lobo & Baffi, Milla Alves & Gurgel, Leandro Vinícius Alves & Pasquini, Daniel, 2022. "Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production," Renewable Energy, Elsevier, vol. 191(C), pages 428-438.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:428-438
    DOI: 10.1016/j.renene.2022.04.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    2. Cano, R. & Pérez-Elvira, S.I. & Fdz-Polanco, F., 2015. "Energy feasibility study of sludge pretreatments: A review," Applied Energy, Elsevier, vol. 149(C), pages 176-185.
    3. Hu, Jun & Cao, Wen & Guo, Liejin, 2021. "Directly convert lignocellulosic biomass to H2 without pretreatment and added cellulase by two-stage fermentation in semi-continuous modes," Renewable Energy, Elsevier, vol. 170(C), pages 866-874.
    4. Huang, Caoxing & Jiang, Xiao & Shen, Xiaojun & Hu, Jinguang & Tang, Wei & Wu, Xinxing & Ragauskas, Arthur & Jameel, Hasan & Meng, Xianzhi & Yong, Qiang, 2022. "Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Rao, P. Venkateswara & Baral, Saroj S. & Dey, Ranjan & Mutnuri, Srikanth, 2010. "Biogas generation potential by anaerobic digestion for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2086-2094, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinícius P. Shibukawa & Lucas Ramos & Mónica M. Cruz-Santos & Carina A. Prado & Fanny M. Jofre & Gabriel L. de Arruda & Silvio S. da Silva & Solange I. Mussatto & Júlio C. dos Santos, 2023. "Impact of Product Diversification on the Economic Sustainability of Second-Generation Ethanol Biorefineries: A Critical Review," Energies, MDPI, vol. 16(17), pages 1-30, September.
    2. Dawid Szwarc & Anna Nowicka & Katarzyna Głowacka, 2022. "Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency," Energies, MDPI, vol. 15(14), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Yao, Junwei & Xie, Xiaobao & Shi, Qingshan, 2021. "Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system," Renewable Energy, Elsevier, vol. 177(C), pages 853-858.
    4. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    5. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    6. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    8. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    9. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    10. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    11. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    12. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    13. Gaurav Kumar Porichha & Yulin Hu & Kasanneni Tirumala Venkateswara Rao & Chunbao Charles Xu, 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy," Energies, MDPI, vol. 14(14), pages 1-17, July.
    14. Liu, Tian & Wang, Peipei & Tian, Jing & Guo, Jiaqi & Zhu, Wenyuan & Bushra, Rani & Huang, Caoxing & Jin, Yongcan & Xiao, Huining & Song, Junlong, 2024. "Emerging role of additives in lignocellulose enzymatic saccharification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    15. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    16. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    17. Afsana Akther & Tofael Ahamed & Ryozo Noguchi & Takuma Genkawa & Tomohiro Takigawa, 2019. "Site suitability analysis of biogas digester plant for municipal waste using GIS and multi-criteria analysis," Asia-Pacific Journal of Regional Science, Springer, vol. 3(1), pages 61-93, February.
    18. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    19. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    20. Akgul, Deniz & Cella, Monica Angela & Eskicioglu, Cigdem, 2017. "Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge," Energy, Elsevier, vol. 123(C), pages 271-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:428-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.